Place the logs for the experiements at the root. Place the notebook in a notebooks directory or modify the path in the notebook.
Download link: https://f004.backblazeb2.com/file/acm-ivalab/GraspKpNet/logs/exp-2023-03-08.zip
Place the logs for the experiements at the root. Place the notebook in a notebooks directory or modify the path in the notebook.
Download link: https://f004.backblazeb2.com/file/acm-ivalab/GraspKpNet/logs/exp-2023-03-08.zip
| { | |
| "cells": [ | |
| { | |
| "attachments": {}, | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# pretrained model results\n", | |
| "\n", | |
| "2023-03-09 " | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 13, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>task</th>\n", | |
| " <th>success</th>\n", | |
| " <th>total</th>\n", | |
| " <th>wall_time</th>\n", | |
| " <th>exp_id</th>\n", | |
| " <th>dataset</th>\n", | |
| " <th>accuracy</th>\n", | |
| " <th>fps</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>dbmctdet</td>\n", | |
| " <td>9108</td>\n", | |
| " <td>9354</td>\n", | |
| " <td>113.399522</td>\n", | |
| " <td>model_alexnet_ajd</td>\n", | |
| " <td>jac_coco_36</td>\n", | |
| " <td>0.973701</td>\n", | |
| " <td>82.487120</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>dbmctdet</td>\n", | |
| " <td>9203</td>\n", | |
| " <td>9354</td>\n", | |
| " <td>124.360462</td>\n", | |
| " <td>model_dla34_ajd</td>\n", | |
| " <td>jac_coco_36</td>\n", | |
| " <td>0.983857</td>\n", | |
| " <td>75.216832</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>dbmctdet</td>\n", | |
| " <td>9162</td>\n", | |
| " <td>9354</td>\n", | |
| " <td>124.072763</td>\n", | |
| " <td>model_resnet18_ajd</td>\n", | |
| " <td>jac_coco_36</td>\n", | |
| " <td>0.979474</td>\n", | |
| " <td>75.391244</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>dbmctdet</td>\n", | |
| " <td>9189</td>\n", | |
| " <td>9354</td>\n", | |
| " <td>122.886355</td>\n", | |
| " <td>model_resnet50_ajd</td>\n", | |
| " <td>jac_coco_36</td>\n", | |
| " <td>0.982360</td>\n", | |
| " <td>76.119110</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>dbmctdet</td>\n", | |
| " <td>9201</td>\n", | |
| " <td>9354</td>\n", | |
| " <td>114.280679</td>\n", | |
| " <td>model_vgg16_ajd</td>\n", | |
| " <td>jac_coco_36</td>\n", | |
| " <td>0.983643</td>\n", | |
| " <td>81.851106</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>5</th>\n", | |
| " <td>dbmctdet_cornell</td>\n", | |
| " <td>20930</td>\n", | |
| " <td>22110</td>\n", | |
| " <td>78.452531</td>\n", | |
| " <td>model_alexnet_cornell</td>\n", | |
| " <td>cornell</td>\n", | |
| " <td>0.946630</td>\n", | |
| " <td>281.826472</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>6</th>\n", | |
| " <td>dbmctdet_cornell</td>\n", | |
| " <td>21399</td>\n", | |
| " <td>22110</td>\n", | |
| " <td>141.670923</td>\n", | |
| " <td>model_dla34_cornell</td>\n", | |
| " <td>cornell</td>\n", | |
| " <td>0.967843</td>\n", | |
| " <td>156.065899</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>7</th>\n", | |
| " <td>dbmctdet_cornell</td>\n", | |
| " <td>21162</td>\n", | |
| " <td>22110</td>\n", | |
| " <td>77.845522</td>\n", | |
| " <td>model_resnet18_cornell</td>\n", | |
| " <td>cornell</td>\n", | |
| " <td>0.957123</td>\n", | |
| " <td>284.024046</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>8</th>\n", | |
| " <td>dbmctdet_cornell</td>\n", | |
| " <td>21260</td>\n", | |
| " <td>22110</td>\n", | |
| " <td>78.786531</td>\n", | |
| " <td>model_resnet50_cornell</td>\n", | |
| " <td>cornell</td>\n", | |
| " <td>0.961556</td>\n", | |
| " <td>280.631723</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>9</th>\n", | |
| " <td>dbmctdet_cornell</td>\n", | |
| " <td>21319</td>\n", | |
| " <td>22110</td>\n", | |
| " <td>78.759574</td>\n", | |
| " <td>model_vgg16_cornell</td>\n", | |
| " <td>cornell</td>\n", | |
| " <td>0.964224</td>\n", | |
| " <td>280.727776</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " task success total wall_time exp_id \\\n", | |
| "0 dbmctdet 9108 9354 113.399522 model_alexnet_ajd \n", | |
| "1 dbmctdet 9203 9354 124.360462 model_dla34_ajd \n", | |
| "2 dbmctdet 9162 9354 124.072763 model_resnet18_ajd \n", | |
| "3 dbmctdet 9189 9354 122.886355 model_resnet50_ajd \n", | |
| "4 dbmctdet 9201 9354 114.280679 model_vgg16_ajd \n", | |
| "5 dbmctdet_cornell 20930 22110 78.452531 model_alexnet_cornell \n", | |
| "6 dbmctdet_cornell 21399 22110 141.670923 model_dla34_cornell \n", | |
| "7 dbmctdet_cornell 21162 22110 77.845522 model_resnet18_cornell \n", | |
| "8 dbmctdet_cornell 21260 22110 78.786531 model_resnet50_cornell \n", | |
| "9 dbmctdet_cornell 21319 22110 78.759574 model_vgg16_cornell \n", | |
| "\n", | |
| " dataset accuracy fps \n", | |
| "0 jac_coco_36 0.973701 82.487120 \n", | |
| "1 jac_coco_36 0.983857 75.216832 \n", | |
| "2 jac_coco_36 0.979474 75.391244 \n", | |
| "3 jac_coco_36 0.982360 76.119110 \n", | |
| "4 jac_coco_36 0.983643 81.851106 \n", | |
| "5 cornell 0.946630 281.826472 \n", | |
| "6 cornell 0.967843 156.065899 \n", | |
| "7 cornell 0.957123 284.024046 \n", | |
| "8 cornell 0.961556 280.631723 \n", | |
| "9 cornell 0.964224 280.727776 " | |
| ] | |
| }, | |
| "execution_count": 13, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "from pathlib import Path\n", | |
| "import json\n", | |
| "import pandas as pd\n", | |
| "\n", | |
| "def parse_log_line(line):\n", | |
| " data = line.split(\":\")[1:]\n", | |
| " return json.loads(\":\".join(data))\n", | |
| "\n", | |
| "paths = Path(\"../exp\").glob(\"**/log.txt\")\n", | |
| "results = []\n", | |
| "for path in paths:\n", | |
| " text = path.read_text()\n", | |
| " # first line is options, second line is timing, third line is results\n", | |
| " lines = text.strip().split(\"\\n\")\n", | |
| " if len(lines) < 3:\n", | |
| " print(f\"skipping {path}\")\n", | |
| " continue\n", | |
| " # each line is a timestamp: json object\n", | |
| " opts = parse_log_line(lines[0])\n", | |
| " result = parse_log_line(lines[2])\n", | |
| " result[\"task\"] = opts[\"task\"]\n", | |
| " result[\"exp_id\"] = opts[\"exp_id\"]\n", | |
| " result[\"dataset\"] = opts[\"dataset\"]\n", | |
| " results.append(result)\n", | |
| "\n", | |
| "df = pd.DataFrame(results)\n", | |
| "df[\"accuracy\"] = df.success / df.total\n", | |
| "df[\"fps\"] = df.total / df.wall_time\n", | |
| "df" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 18, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "| exp_id | dataset | accuracy | fps |\n", | |
| "|:-----------------------|:------------|-----------:|---------:|\n", | |
| "| model_alexnet_ajd | jac_coco_36 | 0.973701 | 82.4871 |\n", | |
| "| model_dla34_ajd | jac_coco_36 | 0.983857 | 75.2168 |\n", | |
| "| model_resnet18_ajd | jac_coco_36 | 0.979474 | 75.3912 |\n", | |
| "| model_resnet50_ajd | jac_coco_36 | 0.98236 | 76.1191 |\n", | |
| "| model_vgg16_ajd | jac_coco_36 | 0.983643 | 81.8511 |\n", | |
| "| model_alexnet_cornell | cornell | 0.94663 | 281.826 |\n", | |
| "| model_dla34_cornell | cornell | 0.967843 | 156.066 |\n", | |
| "| model_resnet18_cornell | cornell | 0.957123 | 284.024 |\n", | |
| "| model_resnet50_cornell | cornell | 0.961556 | 280.632 |\n", | |
| "| model_vgg16_cornell | cornell | 0.964224 | 280.728 |\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# get the results as a markdown table\n", | |
| "res = df[[\"exp_id\", \"dataset\", \"accuracy\", \"fps\"]]\n", | |
| "print(res.to_markdown(index=False))" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.10.5" | |
| }, | |
| "orig_nbformat": 4, | |
| "vscode": { | |
| "interpreter": { | |
| "hash": "5fba4eb1ddfb0b5f2c0f3e2fd25cac3f968691247a9de4806ec9bb18fee8fadd" | |
| } | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |