Last active
July 10, 2017 04:33
-
-
Save Microno95/ab8d62d86f8897ffb1654b1d2fa51c67 to your computer and use it in GitHub Desktop.
Single Sim w/ Multiple Variations Support
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "metadata": { | |
| "trusted": true, | |
| "hide_input": false, | |
| "ExecuteTime": { | |
| "start_time": "2017-07-10T03:47:52.951293Z", | |
| "end_time": "2017-07-10T03:47:53.922550Z" | |
| } | |
| }, | |
| "cell_type": "code", | |
| "source": "import warnings\nwith warnings.catch_warnings():\n warnings.simplefilter(\"ignore\")\n %pylab notebook\n %load_ext cython\n \nimport sympy as smp\nimport sympy.utilities.autowrap as awrap\nsmp.init_printing()\n\nimport rebound\nimport numpy\nimport multiprocessing as mp\nimport os\n\nfrom tqdm import tqdm_notebook\nfrom pickle import dump,load\nfrom functools import partial\nfrom itertools import permutations as perm\nfrom itertools import combinations as comb\nfrom matplotlib.gridspec import GridSpec\n\nnumpy.seterr(all='raise')\nphaseSpaceParameters = ['x', 'y', 'vx', 'vy']\nrc('text', usetex=True)", | |
| "execution_count": 2, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "text": "Populating the interactive namespace from numpy and matplotlib\n", | |
| "name": "stdout" | |
| } | |
| ] | |
| }, | |
| { | |
| "metadata": { | |
| "trusted": true, | |
| "hide_input": false, | |
| "ExecuteTime": { | |
| "start_time": "2017-07-10T03:47:53.924115Z", | |
| "end_time": "2017-07-10T03:49:11.209225Z" | |
| }, | |
| "collapsed": true | |
| }, | |
| "cell_type": "code", | |
| "source": "r, rc, re, q = smp.symbols('r rc re q', Real=True, Positive=True)\nphi = smp.symbols('phi', Real=True)\n\ndef derivX(f, order=1):\n if order == 0:\n return f\n elif order == 1:\n return smp.powdenest(smp.powsimp(smp.cos(phi) * smp.diff(f, r) - smp.sin(phi) * (smp.diff(f, phi) / r)))\n elif order > 1:\n return derivX(smp.powdenest(smp.powsimp(smp.cos(phi) * smp.diff(f, r) - smp.sin(phi) * (smp.diff(f, phi) / r))), order=order-1)\n\ndef derivY(f, order=1):\n if order == 0:\n return f\n elif order == 1:\n return smp.powdenest(smp.powsimp(smp.sin(phi) * smp.diff(f, r) + smp.cos(phi) * (smp.diff(f, phi) / r)))\n elif order > 1:\n return derivY(smp.powdenest(smp.powsimp(smp.sin(phi) * smp.diff(f, r) + smp.cos(phi) * (smp.diff(f, phi) / r))), order=order-1)\n\nUrphi = smp.log(rc**2.0 + r**2.0 * (q**-2.0 + 1.0) / 2.0 - r**2.0 * (q**-2.0 - 1.0) * smp.cos(2 * phi) / 2.0 - r**3.0 * smp.cos(2 * phi) / re) / 2.0\nU_evaluable = awrap.autowrap(Urphi, args=(r, phi, re, rc, q), backend=\"Cython\", language=\"C\")\n\ndU_dx = smp.simplify(-1 * derivX(Urphi))\ndU_dy = smp.simplify(-1 * derivY(Urphi))\n\nforce_x = awrap.autowrap(dU_dx, args=(r, phi, re, rc, q), backend=\"Cython\", language=\"C\")\nforce_y = awrap.autowrap(dU_dy, args=(r, phi, re, rc, q), backend=\"Cython\", language=\"C\")\n\ndU_dx_dx = derivX(dU_dx)\ndU_dx_dy = derivY(dU_dx)\ndU_dy_dx = derivX(dU_dy)\ndU_dy_dy = derivY(dU_dy)\n\ndfx_dx = awrap.autowrap(dU_dx_dx, args=(r, phi, re, rc, q), backend=\"Cython\", language=\"C\")\ndfx_dy = awrap.autowrap(dU_dx_dy, args=(r, phi, re, rc, q), backend=\"Cython\", language=\"C\")\ndfy_dx = awrap.autowrap(dU_dy_dx, args=(r, phi, re, rc, q), backend=\"Cython\", language=\"C\")\ndfy_dy = awrap.autowrap(dU_dy_dy, args=(r, phi, re, rc, q), backend=\"Cython\", language=\"C\")\n\ndU_dx_dx_dx = derivX(dU_dx_dx)\ndU_dx_dy_dx = derivX(dU_dx_dy)\ndU_dx_dy_dy = derivY(dU_dx_dy)\ndU_dx_dx_dy = derivY(dU_dx_dx)\n\ndU_dy_dx_dx = derivX(dU_dy_dx)\ndU_dy_dy_dx = derivX(dU_dy_dy)\ndU_dy_dy_dy = derivY(dU_dy_dy)\ndU_dy_dx_dy = derivY(dU_dy_dx)\n\ndfx_dx_dx = awrap.autowrap(dU_dx_dx_dx, args=(r, phi, re, rc, q), backend=\"Cython\", language=\"C\")\ndfx_dy_dx = awrap.autowrap(dU_dx_dy_dx, args=(r, phi, re, rc, q), backend=\"Cython\", language=\"C\")\ndfx_dy_dy = awrap.autowrap(dU_dx_dy_dy, args=(r, phi, re, rc, q), backend=\"Cython\", language=\"C\")\ndfx_dx_dy = awrap.autowrap(dU_dx_dx_dy, args=(r, phi, re, rc, q), backend=\"Cython\", language=\"C\")\n\ndfy_dx_dx = awrap.autowrap(dU_dy_dx_dx, args=(r, phi, re, rc, q), backend=\"Cython\", language=\"C\")\ndfy_dy_dx = awrap.autowrap(dU_dy_dy_dx, args=(r, phi, re, rc, q), backend=\"Cython\", language=\"C\")\ndfy_dy_dy = awrap.autowrap(dU_dy_dy_dy, args=(r, phi, re, rc, q), backend=\"Cython\", language=\"C\")\ndfy_dx_dy = awrap.autowrap(dU_dy_dx_dy, args=(r, phi, re, rc, q), backend=\"Cython\", language=\"C\")\n\nenergy = smp.Symbol('E', Real=True)\nvy = smp.sqrt(2*(energy - Urphi))\n\nvyinit_var_zeroth = awrap.autowrap(vy, args=(energy, r, phi, re, rc, q), language=\"C\", backend=\"Cython\")\nvyinit_var_first = awrap.autowrap(derivX(vy), args=(energy, r, phi, re, rc, q), language=\"C\", backend=\"Cython\")\nvyinit_var_second = awrap.autowrap(derivX(vy, 2), args=(energy, r, phi, re, rc, q), language=\"C\", backend=\"Cython\")", | |
| "execution_count": 3, | |
| "outputs": [] | |
| }, | |
| { | |
| "metadata": { | |
| "trusted": true, | |
| "hide_input": false, | |
| "ExecuteTime": { | |
| "start_time": "2017-07-10T03:49:11.210862Z", | |
| "end_time": "2017-07-10T03:49:11.216490Z" | |
| }, | |
| "collapsed": true | |
| }, | |
| "cell_type": "code", | |
| "source": "%%cython\n\nimport rebound\nimport cython\nimport os\ncimport cython\nimport numpy\ncimport numpy\n\n\n@cython.boundscheck(False)\n@cython.wraparound(False)\n@cython.profile(False)\ndef bisect(sim,t1,t2):\n tm = (t1+t2)/2.\n for i in range(52):\n if t2-t1<1e-4:\n break\n tm = (t1+t2)/2.\n sim.integrate(tm)\n if sim.particles[0].y>0.:\n t2 = tm\n else:\n t1 = tm\n return tm\n\ndef pearsonSpectraDistance(A, B, axis=0):\n # Compute the mean of each spectra\n AMean = numpy.mean(A, axis=axis)\n BMean = numpy.mean(B, axis=axis)\n\n # Compute the Pearson Correlation Coefficient for two sets of binned data\n correlation = numpy.vdot(A - AMean, B - BMean, axis=axis)\n correlation /= numpy.linalg.norm(A - AMean, axis=axis)\n correlation /= numpy.linalg.norm(B - BMean, axis=axis)\n return correlation\n\ndef euclideanSpectraDistance(A, B, normalised=0, axis=0):\n return (numpy.linalg.norm(A - B, axis=axis)) / (1 if not normalised else A.shape[axis] * B.shape[axis])\n\ndef custModuloSpectraDistance(A, B, normalised=0, axis=0):\n A_temp, B_temp = numpy.array((A, B))\n initSum = numpy.linalg.norm(A_temp - B_temp, axis=axis)\n rollCount = 0\n for i in numpy.arange(0, A_temp.shape[axis]):\n A_temp = numpy.roll(A_temp, 1, axis=axis)\n if (numpy.linalg.norm(A_temp - B_temp, axis=axis) < initSum):\n initSum = numpy.linalg.norm(A_temp - B_temp, axis=axis)\n rollCount = i\n A_temp = numpy.roll(A, rollCount, axis=axis)\n return (numpy.linalg.norm(A_temp - B_temp, axis=axis)) / (1 if not normalised else A.shape[axis] * B.shape[axis])\n\ndef fsum(x):\n \"\"\"\n Compensated summation that can work with numpy arrays as well.\n \"\"\"\n temp_x = x[:]\n interSum = c = 0\n for num in temp_x:\n y = num - c\n t = interSum + y\n c = (t - interSum) - y\n interSum = t\n return interSum\n\ndef ensure_dir(path): # Ensures that the path to a directory exists, and creates it if not\n try:\n os.makedirs(path)\n except OSError:\n if not os.path.isdir(path): # Raises the OSError if and only if the specified path is a file and not a directory\n raise\n \ndef runningMeanFast(x, window=100, axis=0):\n assert(axis < x.ndim)\n cumsum = numpy.cumsum(numpy.insert(x, 0, 0, axis=-1), axis=axis)\n if window == 0:\n N = x.shape[axis]\n dim_array = numpy.ones((1, x.ndim), int).ravel()\n dim_array[axis] = -1\n cumsum = numpy.delete(cumsum, 0, axis=-1)\n return (cumsum / numpy.reshape(numpy.arange(1, N+1), dim_array))\n elif window == -1:\n return x\n else:\n cumsum[window:] = cumsum[window:] - cumsum[:-window]\n return cumsum[window - 1:] / window", | |
| "execution_count": 4, | |
| "outputs": [] | |
| }, | |
| { | |
| "metadata": { | |
| "trusted": true, | |
| "ExecuteTime": { | |
| "start_time": "2017-07-10T03:49:11.218105Z", | |
| "end_time": "2017-07-10T03:49:12.432270Z" | |
| }, | |
| "collapsed": true | |
| }, | |
| "cell_type": "code", | |
| "source": "class PhaseSpaceCoordinates:\n def __init__(self, **kwargs):\n for key in kwargs.keys():\n if key in phaseSpaceParameters:\n self.__dict__.update(((key, kwargs[key]),))\n else:\n raise KeyError(\"Invalid key in arguments! {} not defined as a valid phaseSpaceParameter\".format(key))\n for key in phaseSpaceParameters:\n if key not in kwargs.keys():\n self.__dict__.update(((key, 0.0),))\n \n def __getitem__(self, items):\n if hasattr(items, '__len__') and not isinstance(items, str):\n raise TypeError(\"Multiple arguments are not allowed\")\n elif isinstance(items, int) and items >= len(phaseSpaceParameters):\n raise IndexError(\"Index out of range for {} phaseSpaceParameters\".format(len(phaseSpaceParameters)))\n elif isinstance(items, str) and items not in phaseSpaceParameters:\n raise KeyError(\"{} not a phaseSpaceParameter\".format(items))\n else:\n if isinstance(items, int):\n return self.__dict__[phaseSpaceParameters[items]]\n elif isinstance(items, str):\n return self.__dict__[items]\n elif isinstance(items, slice):\n return tuple(self.__dict__[attribute] for attribute in phaseSpaceParameters[items])\n \n def __iter__(self):\n for parameter in phaseSpaceParameters:\n yield [self.__dict__[parameter]]\n \n def as_dict(self):\n return dict([(parameter, self.__dict__[parameter]) for parameter in phaseSpaceParameters])\n \n def as_numpy_array(self, returnType=\"double\", normalised=False):\n if normalised:\n if numpy.linalg.norm(numpy.array([self.__dict__[parameter] for parameter in phaseSpaceParameters], dtype=returnType)) != 0:\n return numpy.array([self.__dict__[parameter] for parameter in phaseSpaceParameters], dtype=returnType) / numpy.linalg.norm(numpy.array([self.__dict__[parameter] for parameter in phaseSpaceParameters], dtype=returnType))\n else:\n return numpy.array([self.__dict__[parameter] for parameter in phaseSpaceParameters], dtype=returnType)\n else:\n return numpy.array([self.__dict__[parameter] for parameter in phaseSpaceParameters], dtype=returnType)\n \n \nclass VariationalSimulationResults:\n def __init__(self, sampleTimes=[], positions=[], numberOfVariationalParticles=0, variationalPositions=None):\n assert(len(sampleTimes) == len(positions))\n assert(len(variationalPositions[0]) == numberOfVariationalParticles)\n assert(len(variationalPositions[1]) == numberOfVariationalParticles)\n self.RealParticle = [PhaseSpaceCoordinates() for _ in range(len(sampleTimes))]\n for sampleIndex in range(len(self.RealParticle)):\n for attributeIndex, attribute in enumerate(phaseSpaceParameters):\n setattr(self.RealParticle[sampleIndex], attribute, positions[sampleIndex][attributeIndex])\n \n self.VariationalCount = numberOfVariationalParticles\n self.VariationalParticles = []\n if self.VariationalCount > 0:\n for variationalIndex in range(numberOfVariationalParticles):\n self.VariationalParticles.append({'1st Order': [PhaseSpaceCoordinates(**dict(((attribute, attributeValue) for attribute, attributeValue in zip(phaseSpaceParameters, variationalPositions[0][variationalIndex][sampleIndex])))) for sampleIndex in range(len(sampleTimes))], \n '2nd Order': [PhaseSpaceCoordinates(**dict(((attribute, attributeValue) for attribute, attributeValue in zip(phaseSpaceParameters, variationalPositions[1][variationalIndex][sampleIndex])))) for sampleIndex in range(len(sampleTimes))]})\n self.SampleTimes = sampleTimes[:]\n self.SampleCount = len(sampleTimes)\n \n def __getitem__(self, items):\n if not hasattr(items, '__len__'):\n sampleIndex = items\n return [self.SampleTimes[sampleIndex], self.RealParticle[sampleIndex], [self.VariationalParticles[varIndex][varOrder][sampleIndex] for varOrder in [\"1st Order\", \"2nd Order\"] for varIndex in range(self.VariationalCount)]]\n elif len(items) == 2:\n sampleIndex = items[0]\n whichAttribute = items[1]\n if isinstance(whichAttribute, str) or isinstance(whichAttribute, int):\n if isinstance(whichAttribute, str) and whichAttribute in self.__dict__:\n if whichAttribute == \"VariationalParticles\":\n return [self.__dict__[whichAttribute][varIndex][varType][sampleIndex] for varType in [\"1st Order\", \"2nd Order\"] for varIndex in range(self.VariationalCount)]\n else:\n return [self.__dict__[whichAttribute][varType][sampleIndex] for varType in [\"1st Order\", \"2nd Order\"]]\n elif isinstance(whichAttribute, int) and whichAttribute < 3:\n if whichAttribute == 0:\n return self.__dict__['SampleTimes'][sampleIndex]\n elif whichAttribute == 1:\n return self.__dict__['RealParticle'][sampleIndex]\n elif whichAttribute == 2:\n return [self.__dict__['VariationalParticles'][varIndex][varType][sampleIndex] for varType in [\"1st Order\", \"2nd Order\"] for varIndex in range(self.VariationalCount)]\n else:\n raise ValueError\n else:\n raise TypeError\n elif len(items) == 3:\n sampleIndex = items[0]\n whichAttribute = items[1]\n varParticle = items[2]\n if (isinstance(whichAttribute, str) and whichAttribute == \"VariationalParticles\") or (isinstance(whichAttribute, int) and whichAttribute == 2 and varParticle < self.VariationalCount):\n return [self.__dict__[\"VariationalParticles\"][varParticle][varType][sampleIndex] for varType in [\"1st Order\", \"2nd Order\"]]\n elif not (isinstance(whichAttribute, str) or isinstance(whichAttribute, int)):\n raise TypeError\n else:\n raise ValueError\n elif len(items) == 4:\n sampleIndex = items[0]\n whichAttribute = items[1]\n varParticle = items[2]\n varOrder = items[3]\n if (isinstance(whichAttribute, str) and whichAttribute == \"VariationalParticles\") or (isinstance(whichAttribute, int) and whichAttribute == 2):\n if (isinstance(varOrder, str) and varOrder in [\"1st Order\", \"2nd Order\"]) or (isinstance(varOrder, int) and varOrder < 2 and varParticle < self.VariationalCount):\n return self.__dict__[\"VariationalParticles\"][varParticle][varOrder][sampleIndex]\n elif not (isinstance(varOrder, str) or isinstance(varOrder, int)):\n raise TypeError\n else:\n raise ValueError\n elif not (isinstance(whichAttribute, str) or isinstance(whichAttribute, int)):\n raise TypeError\n else:\n raise ValueError\n else:\n raise IndexError(\"Too many arguments\")\n \n def computeSpectra(self):\n if \"VariationSpectra\" not in self.__dict__.keys():\n finalSpectra = []\n temporarySpectraArray = numpy.empty((self.SampleCount, 2, (len(phaseSpaceParameters) * (len(phaseSpaceParameters) - 1) // 2)), dtype=\"double\")\n \n for variationPairIndex in range(0, self.VariationalCount):\n deviationIterable = tqdm_notebook(enumerate(zip(self.VariationalParticles[variationPairIndex][\"1st Order\"], \n self.VariationalParticles[variationPairIndex][\"2nd Order\"])), \n total=temporarySpectraArray.shape[0])\n for sampleIndex, (dev1, ddev1) in deviationIterable:\n i = 0\n for (idev1, iidev1), (iddev1, iiddev1), in zip(comb(dev1, 2), comb(ddev1, 2)):\n temporarySpectraArray[sampleIndex][0][i] = numpy.arctan2(idev1, iidev1)\n temporarySpectraArray[sampleIndex][1][i] = numpy.arctan2(iddev1, iiddev1)\n i += 1\n finalSpectra.append(numpy.copy(temporarySpectraArray))\n \n self.__dict__.update([(\"VariationSpectra\", [{\"1st Order\": numpy.ravel(finalSpectra[varIndex][:, 0]), \"2nd Order\": numpy.ravel(finalSpectra[varIndex][:, 1])} for varIndex in range(0, self.VariationalCount)])])\n \n def getVariationSpectra(self):\n if \"VariationSpectra\" not in self.__dict__.keys():\n self.computeSpectra()\n return self.__dict__[\"VariationSpectra\"]\n \n def splitSpectra(self, parts=2):\n if \"VariationSpectra\" not in self.__dict__.keys():\n self.computeSpectra()\n spectraStride = len(phaseSpaceParameters) * (len(phaseSpaceParameters) - 1) // 2\n temporaryListOfSpectra = [[varSpectra[\"1st Order\"], varSpectra[\"2nd Order\"]] for varSpectra in self.__dict__[\"VariationSpectra\"]]\n temporaryListOfSpectra = numpy.transpose(temporaryListOfSpectra, (2, 0, 1))\n \n retList = []\n for partIndex in range(1, parts + 1):\n retList.append(temporaryListOfSpectra[spectraStride * (self.SampleCount * (partIndex - 1)) // parts:spectraStride * (self.SampleCount * (partIndex)) // parts])\n \n retList = numpy.transpose(retList, (0, 2, 3, 1))\n \n return retList\n ", | |
| "execution_count": 5, | |
| "outputs": [] | |
| }, | |
| { | |
| "metadata": { | |
| "trusted": true, | |
| "hide_input": false, | |
| "ExecuteTime": { | |
| "start_time": "2017-07-10T03:49:12.436611Z", | |
| "end_time": "2017-07-10T03:49:13.550725Z" | |
| } | |
| }, | |
| "cell_type": "code", | |
| "source": "qcur = .9\nrccur = 0.14\nrecur = 3.0\nE = -0.337\n\ndef af_with_second_order(sim):\n # Particle whose trajectory is being integrated\n p = sim.contents.particles[0]\n # The position components\n x = p.x\n y = p.y\n\n rcur = numpy.sqrt(x**2 + y**2)\n phicur = numpy.arctan2(y, x)\n\n # Acceleration along x-axis\n p.ax = force_x(rcur, phicur, recur, rccur, qcur)\n # Acceleration along y-axis\n p.ay = force_y(rcur, phicur, recur, rccur, qcur)\n\n \"\"\" NOTES TO SELF:\n # #############################################################\n # Generating the expressions using a symbolic algebra package is far\n # more convenient than doing it all by hand...\n \"\"\"\n \n # Compute the derivatives as they will be reused for each set of variational equations\n fx_dx = dfx_dx(rcur, phicur, recur, rccur, qcur)\n fx_dy = dfx_dy(rcur, phicur, recur, rccur, qcur)\n fy_dx = dfy_dx(rcur, phicur, recur, rccur, qcur)\n fy_dy = dfy_dy(rcur, phicur, recur, rccur, qcur)\n\n fx_dx_dx = dfx_dx_dx(rcur, phicur, recur, rccur, qcur)\n fx_dx_dy = dfx_dx_dy(rcur, phicur, recur, rccur, qcur)\n fx_dy_dx = fx_dx_dy\n# fx_dy_dx = dfx_dy_dx(rcur, phicur, recur, rccur, qcur)\n fx_dy_dy = dfx_dy_dy(rcur, phicur, recur, rccur, qcur)\n\n fy_dx_dx = dfy_dx_dx(rcur, phicur, recur, rccur, qcur) \n fy_dx_dy = dfy_dx_dy(rcur, phicur, recur, rccur, qcur)\n fy_dy_dx = fy_dx_dy\n# fy_dy_dx = dfy_dy_dx(rcur, phicur, recur, rccur, qcur)\n fy_dy_dy = dfy_dy_dy(rcur, phicur, recur, rccur, qcur)\n \n for i in range(1, len(sim.contents.particles), 2):\n \"\"\"\n For each pair of variational particles, we compute the relevant accelerations\n \"\"\"\n p1 = sim.contents.particles[i]\n p2 = sim.contents.particles[i + 1]\n\n p1.ax = (fx_dx * p1.x + fx_dy * p1.y)\n\n p1.ay = (fy_dx * p1.x + fy_dy * p1.y)\n p2.ax = (fx_dx * p2.x + fx_dy * p2.y)\n\n p2.ay = (fy_dx * p2.x + fy_dy * p2.y)\n\n p2.ax += (fx_dx_dx * p1.x * p1.x + \n (fx_dx_dy + fx_dy_dx) * p1.y * p1.x + \n fx_dy_dy * p1.y * p1.y)\n\n p2.ay += (fy_dx_dx * p1.x * p1.x + \n (fy_dx_dy + fy_dy_dx) * p1.y * p1.x + \n fy_dy_dy * p1.y * p1.y)\n\ndef af_without_second_order(sim):\n # Particle whose trajectory is being integrated\n p = sim.contents.particles[0]\n # The position components\n x = p.x\n y = p.y\n\n rcur = numpy.sqrt(x**2 + y**2)\n phicur = numpy.arctan2(y, x)\n\n # Acceleration along x-axis\n p.ax = force_x(rcur, phicur, recur, rccur, qcur)\n # Acceleration along y-axis\n p.ay = force_y(rcur, phicur, recur, rccur, qcur)\n\n \"\"\" NOTES TO SELF:\n # #############################################################\n # Generating the expressions using a symbolic algebra package is far\n # more convenient than doing it all by hand...\n \"\"\"\n \n # Compute the derivatives as they will be reused for each set of variational equations\n fx_dx = dfx_dx(rcur, phicur, recur, rccur, qcur)\n fx_dy = dfx_dy(rcur, phicur, recur, rccur, qcur)\n fy_dx = dfy_dx(rcur, phicur, recur, rccur, qcur)\n fy_dy = dfy_dy(rcur, phicur, recur, rccur, qcur)\n \n for i in range(1, len(sim.contents.particles), 1):\n \"\"\"\n For each pair of variational particles, we compute the relevant accelerations\n \"\"\"\n p1 = sim.contents.particles[i]\n\n p1.ax = (fx_dx * p1.x + fx_dy * p1.y)\n\n p1.ay = (fy_dx * p1.x + fy_dy * p1.y)\n \n\ndef getxtDeviations(xinit=0.03, yinit=0, vxinit=0, vyinit=0, tfin=1, with_second_order=True, initDeviation=({'x': 1, 'y': 0, 'vx': 0, 'vy': 0},),\n sampleCount=100, progress_bar_visible=True):\n sim = rebound.Simulation()\n \n if with_second_order: \n sim.additional_forces = af_with_second_order\n else:\n sim.additional_forces = af_without_second_order\n sim.add(x=xinit, y=yinit, vx=vxinit, vy=vyinit)\n \n numVariationalParticles = len(initDeviation) # Each dictionary in the tuple sets the initial conditions for ONE variational particle pair\n initialDeviations = initDeviation[:] # Copies the initDeviations argument to a local variable to ease modification and prevent an external variable from being modified\n \n # Initialises array to store the current deviations of each variational particle pair\n curDeviation = numpy.empty((numVariationalParticles, sampleCount, len(phaseSpaceParameters)), dtype='double')\n \n # Initialises array to store the derivatives of the current deviations of each variational particle pair\n derivDeviation = numpy.empty((numVariationalParticles, sampleCount, len(phaseSpaceParameters)), dtype='double')\n \n # Initialises array to store the position of the real particle\n positions = numpy.empty((sampleCount, len(phaseSpaceParameters)), dtype='double')\n \n # Initialises array to store the simulation times at which the system is sampled\n curTime = numpy.empty((sampleCount,), dtype='double')\n \n # Initialises each variational equation particle pair by first setting undefined attributes to 0\n # And then adding the particle pairs\n for varParticleIndex in range(numVariationalParticles):\n for attribute in phaseSpaceParameters:\n if attribute not in initialDeviations[varParticleIndex].keys():\n initialDeviations[varParticleIndex].update(((attribute, 0.0),))\n \n norm_init_dev = numpy.linalg.norm(list(initialDeviations[varParticleIndex].values()))\n initialDeviations[varParticleIndex] = {key: value / norm_init_dev for key, value in initialDeviations[varParticleIndex].items()}\n \n sim.add(**initialDeviations[varParticleIndex])\n if with_second_order: \n sim.add(x=0, y=0, vx=0, vy=0)\n \n # Hide progress bar if it isn't necessary\n if progress_bar_visible:\n integration_loop_iterable = tqdm_notebook(enumerate(numpy.linspace(0, tfin, sampleCount)), total=sampleCount)\n else:\n integration_loop_iterable = enumerate(numpy.linspace(0, tfin, sampleCount))\n # Iterates over the sample points that are linearly spaced between the simulation start and end times\n # And records the state of the system at each step\n for sampleIndex, samplePoint in integration_loop_iterable:\n try:\n # Append the current simulation time to the curTime array\n curTime[sampleIndex] = sim.t\n \n # Append the position of the real particles to the positions array\n for attributeIndex, attribute in enumerate(phaseSpaceParameters):\n positions[sampleIndex, attributeIndex] = getattr(sim.particles[0], attribute)\n \n # For each variational particle pair, append the current variational derivatives to the relevant arrays\n for varParticleIndex in range(numVariationalParticles):\n for attributeIndex, attribute in enumerate(phaseSpaceParameters):\n if with_second_order:\n curDeviation[varParticleIndex, sampleIndex, attributeIndex] = getattr(sim.particles[varParticleIndex * 2 + 1], attribute)\n derivDeviation[varParticleIndex, sampleIndex, attributeIndex] = getattr(sim.particles[varParticleIndex * 2 + 2], attribute)\n else:\n curDeviation[varParticleIndex, sampleIndex, attributeIndex] = getattr(sim.particles[varParticleIndex + 1], attribute)\n try:\n sim.integrate(samplePoint)\n except KeyboardInterrupt as e:\n raise e\n except KeyboardInterrupt as e:\n raise e\n return\n\n # Append the current simulation time to the curTime array\n curTime[sampleIndex] = sim.t\n\n # Append the position of the real particles to the positions array\n for attributeIndex, attribute in enumerate(phaseSpaceParameters):\n positions[sampleIndex, attributeIndex] = getattr(sim.particles[0], attribute)\n\n # For each variational particle pair, append the current variational derivatives to the relevant arrays\n for varParticleIndex in range(numVariationalParticles):\n for attributeIndex, attribute in enumerate(phaseSpaceParameters):\n if with_second_order:\n curDeviation[varParticleIndex, sampleIndex, attributeIndex] = getattr(sim.particles[varParticleIndex * 2 + 1], attribute)\n derivDeviation[varParticleIndex, sampleIndex, attributeIndex] = getattr(sim.particles[varParticleIndex * 2 + 2], attribute)\n else:\n curDeviation[varParticleIndex, sampleIndex, attributeIndex] = getattr(sim.particles[varParticleIndex + 1], attribute)\n \n return VariationalSimulationResults(curTime, positions, numVariationalParticles, (curDeviation, derivDeviation))", | |
| "execution_count": 6, | |
| "outputs": [] | |
| }, | |
| { | |
| "metadata": { | |
| "trusted": true, | |
| "hide_input": false, | |
| "ExecuteTime": { | |
| "start_time": "2017-07-10T03:59:26.211963Z", | |
| "end_time": "2017-07-10T03:59:26.218144Z" | |
| }, | |
| "collapsed": true | |
| }, | |
| "cell_type": "code", | |
| "source": "initial_x = 0.62\norbit_type_options = [\"chaotic\", \"regular\", \"I'm very confused...\"]\norbit_type = orbit_type_options[1]\nfinal_time = 1000\ntotal_samples = 1000\nsavePath = \"./SingleSim/resultsDeviations_{:.2e}_{:.2e}_{}_/\".format(initial_x, final_time, total_samples)\nfilename = savePath + \"data.bin\"\nresim = False", | |
| "execution_count": 44, | |
| "outputs": [] | |
| }, | |
| { | |
| "metadata": { | |
| "ExecuteTime": { | |
| "start_time": "2017-07-10T03:59:26.377700Z", | |
| "end_time": "2017-07-10T03:59:26.455762Z" | |
| }, | |
| "trusted": true, | |
| "collapsed": true | |
| }, | |
| "cell_type": "code", | |
| "source": "# numberOfVariations = 6\n\n# def get_MLE_first_order(a):\n# time = a[:, 0]\n# LCE1 = []\n\n# for varIndex in range(numberOfVariations):\n# LCE1.append(numpy.array([numpy.log(numpy.linalg.norm(i.as_numpy_array()))/t for t,i in zip(time[2:], a[2:, 2, varIndex, \"1st Order\"])]))\n \n# def get_MLE_with_second_order(a):\n# time = a[:, 0]\n# LCE1 = []\n# DLCE1 = []\n\n# for varIndex in range(numberOfVariations):\n# LCE1.append(numpy.array([numpy.log(numpy.linalg.norm(i.as_numpy_array()))/t for t,i in zip(time[2:], a[2:, 2, varIndex, \"1st Order\"])]))\n# DLCE1.append(numpy.array([numpy.log(numpy.linalg.norm(i.as_numpy_array()))/t for t,i in zip(time[2:], a[2:, 2, varIndex, \"2nd Order\"])]))\n\n# test = partial(getxtDeviations, xinit=initial_x, vyinit=vyinit_var_zeroth(E, initial_x, 0, recur, rccur, qcur), tfin=final_time, sampleCount=total_samples, progress_bar_visible=False)", | |
| "execution_count": 45, | |
| "outputs": [] | |
| }, | |
| { | |
| "metadata": { | |
| "ExecuteTime": { | |
| "start_time": "2017-07-10T03:59:26.527615Z", | |
| "end_time": "2017-07-10T03:59:26.645580Z" | |
| }, | |
| "trusted": true | |
| }, | |
| "cell_type": "code", | |
| "source": "# %%timeit -n 5\n# a = test(initDeviation=[{'x':1}, {'y':1}, {'x':1, 'y':1}, {'x':-1, 'y':1}, {'x':-1, 'y':-1}, {'x':1, 'y':-1}], with_second_order=False)\n# get_MLE_first_order(a)", | |
| "execution_count": 46, | |
| "outputs": [] | |
| }, | |
| { | |
| "metadata": { | |
| "ExecuteTime": { | |
| "start_time": "2017-07-10T03:59:26.681680Z", | |
| "end_time": "2017-07-10T03:59:26.828715Z" | |
| }, | |
| "trusted": true | |
| }, | |
| "cell_type": "code", | |
| "source": "# %%timeit -n 5 -r 7\n# a = test(initDeviation=[{'x':1}, {'y':1}, {'x':1, 'y':1}, {'x':-1, 'y':1}, {'x':-1, 'y':-1}, {'x':1, 'y':-1}], with_second_order=True)\n# get_MLE_with_second_order(a)", | |
| "execution_count": 47, | |
| "outputs": [] | |
| }, | |
| { | |
| "metadata": {}, | |
| "cell_type": "markdown", | |
| "source": "The ratio of the time it takes to do the second order calculations to the first order calculations including the MLE for both is $3.46\\pm0.175$" | |
| }, | |
| { | |
| "metadata": { | |
| "trusted": true, | |
| "hide_input": false, | |
| "ExecuteTime": { | |
| "start_time": "2017-07-10T03:59:26.978778Z", | |
| "end_time": "2017-07-10T03:59:27.055244Z" | |
| } | |
| }, | |
| "cell_type": "code", | |
| "source": "if not os.path.isfile(filename) or resim:\n try:\n test = partial(getxtDeviations, xinit=initial_x, vyinit=vyinit_var_zeroth(E, initial_x, 0, recur, rccur, qcur), tfin=final_time, sampleCount=total_samples)\n a = test(initDeviation=[{'x':1}, {'y':1}, {'x':1, 'y':1}, {'x':-1, 'y':1}, {'x':-1, 'y':-1}, {'x':1, 'y':-1}])\n except:\n raise\n else:\n ensure_dir(savePath)\n with open(filename, 'wb') as f:\n dump(a, f)\nelse:\n with open(filename, 'rb') as f:\n a = load(f)\n final_time = a[0, -1]\n total_samples = len(a[0])", | |
| "execution_count": 48, | |
| "outputs": [] | |
| }, | |
| { | |
| "metadata": { | |
| "trusted": true, | |
| "scrolled": false, | |
| "ExecuteTime": { | |
| "start_time": "2017-07-10T03:59:27.136333Z", | |
| "end_time": "2017-07-10T03:59:29.924942Z" | |
| } | |
| }, | |
| "cell_type": "code", | |
| "source": "samplingSteps=1\nparts = 2 # The number of slices to split spectra data into\nbinCount = 100 # Automatically determine the number of bins to use, can be overrided with an integer\nfig = plt.figure(figsize=(6 * parts, 6))\n\naxisGrid = GridSpec(2, parts)\n\naxes = [fig.add_subplot(gridIndex) for gridIndex in axisGrid]\n\n# Plot the histograms for the first and second halves to the appropriate subplots\n\nspectraInParts = a.splitSpectra(parts=parts)\ntime = a[:, 0]\n\nplotLabels = [(varIndex, r\"$\\vec{{S}}_{}^{{\\left(0\\right)}}$\".format(varIndex), r\"$\\vec{{S}}_{}^{{\\left(1\\right)}}$\".format(varIndex)) for varIndex in range(spectraInParts.shape[1])]\n\nif binCount == 0:\n for partIndex in range(parts):\n for varIndex in range(spectraInParts.shape[0]):\n for varOrder in range(2):\n binCount = numpy.maximum(binCount, len(numpy.histogram(spectraInParts[partIndex, varIndex, varOrder], range=(-numpy.pi, numpy.pi), bins='fd')[0]) - 1)\n\nprint(\"Optimal bin count is {} bins\".format(binCount))\n\nfor varIndex, histLabel, derivHistLabel in plotLabels:\n for partIndex in range(parts):\n axes[partIndex].hist(spectraInParts[partIndex, varIndex, 0, ::samplingSteps], range=(-numpy.pi, numpy.pi), histtype='step', bins=binCount, normed=True, label=histLabel)\n axes[partIndex + parts].hist(spectraInParts[partIndex, varIndex, 1, ::samplingSteps], range=(-numpy.pi, numpy.pi), histtype='step', bins=binCount, normed=True, label=derivHistLabel)\n axes[partIndex].set_title(\"Spectra from {:.1e} to {:.1e} Orbits\".format(time[(len(time) - 1) * partIndex // parts], time[(len(time) - 1) * (partIndex + 1) // parts]))\n\n# Formatting fluff\nfor subplotAxis in axes:\n subplotAxis.set_xlabel(\"Angle (Radians)\")\n subplotAxis.legend(fontsize=12)\n subplotAxis.relim()\n subplotAxis.autoscale_view()\n \nplt.tight_layout()\n\n# Savefile if a savePath is given\n\nif savePath is not None:\n for extension in [\".png\", \".pdf\"]:\n fig.savefig(savePath + 'Spectral_Comparison_Plots_{}{}'.format(time[-1], extension))", | |
| "execution_count": 49, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "text/plain": "<IPython.core.display.Javascript object>", | |
| "application/javascript": "/* Put everything inside the global mpl namespace */\nwindow.mpl = {};\n\n\nmpl.get_websocket_type = function() {\n if (typeof(WebSocket) !== 'undefined') {\n return WebSocket;\n } else if (typeof(MozWebSocket) !== 'undefined') {\n return MozWebSocket;\n } else {\n alert('Your browser does not have WebSocket support.' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.');\n };\n}\n\nmpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = (this.ws.binaryType != undefined);\n\n if (!this.supports_binary) {\n var warnings = document.getElementById(\"mpl-warnings\");\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent = (\n \"This browser does not support binary websocket messages. \" +\n \"Performance may be slow.\");\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = $('<div/>');\n this._root_extra_style(this.root)\n this.root.attr('style', 'display: inline-block');\n\n $(parent_element).append(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n fig.send_message(\"send_image_mode\", {});\n if (mpl.ratio != 1) {\n fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n }\n fig.send_message(\"refresh\", {});\n }\n\n this.imageObj.onload = function() {\n if (fig.image_mode == 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function() {\n this.ws.close();\n }\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n}\n\nmpl.figure.prototype._init_header = function() {\n var titlebar = $(\n '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n 'ui-helper-clearfix\"/>');\n var titletext = $(\n '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n 'text-align: center; padding: 3px;\"/>');\n titlebar.append(titletext)\n this.root.append(titlebar);\n this.header = titletext[0];\n}\n\n\n\nmpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n\n}\n\n\nmpl.figure.prototype._root_extra_style = function(canvas_div) {\n\n}\n\nmpl.figure.prototype._init_canvas = function() {\n var fig = this;\n\n var canvas_div = $('<div/>');\n\n canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n\n function canvas_keyboard_event(event) {\n return fig.key_event(event, event['data']);\n }\n\n canvas_div.keydown('key_press', canvas_keyboard_event);\n canvas_div.keyup('key_release', canvas_keyboard_event);\n this.canvas_div = canvas_div\n this._canvas_extra_style(canvas_div)\n this.root.append(canvas_div);\n\n var canvas = $('<canvas/>');\n canvas.addClass('mpl-canvas');\n canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n\n this.canvas = canvas[0];\n this.context = canvas[0].getContext(\"2d\");\n\n var backingStore = this.context.backingStorePixelRatio ||\n\tthis.context.webkitBackingStorePixelRatio ||\n\tthis.context.mozBackingStorePixelRatio ||\n\tthis.context.msBackingStorePixelRatio ||\n\tthis.context.oBackingStorePixelRatio ||\n\tthis.context.backingStorePixelRatio || 1;\n\n mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n\n var rubberband = $('<canvas/>');\n rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n\n var pass_mouse_events = true;\n\n canvas_div.resizable({\n start: function(event, ui) {\n pass_mouse_events = false;\n },\n resize: function(event, ui) {\n fig.request_resize(ui.size.width, ui.size.height);\n },\n stop: function(event, ui) {\n pass_mouse_events = true;\n fig.request_resize(ui.size.width, ui.size.height);\n },\n });\n\n function mouse_event_fn(event) {\n if (pass_mouse_events)\n return fig.mouse_event(event, event['data']);\n }\n\n rubberband.mousedown('button_press', mouse_event_fn);\n rubberband.mouseup('button_release', mouse_event_fn);\n // Throttle sequential mouse events to 1 every 20ms.\n rubberband.mousemove('motion_notify', mouse_event_fn);\n\n rubberband.mouseenter('figure_enter', mouse_event_fn);\n rubberband.mouseleave('figure_leave', mouse_event_fn);\n\n canvas_div.on(\"wheel\", function (event) {\n event = event.originalEvent;\n event['data'] = 'scroll'\n if (event.deltaY < 0) {\n event.step = 1;\n } else {\n event.step = -1;\n }\n mouse_event_fn(event);\n });\n\n canvas_div.append(canvas);\n canvas_div.append(rubberband);\n\n this.rubberband = rubberband;\n this.rubberband_canvas = rubberband[0];\n this.rubberband_context = rubberband[0].getContext(\"2d\");\n this.rubberband_context.strokeStyle = \"#000000\";\n\n this._resize_canvas = function(width, height) {\n // Keep the size of the canvas, canvas container, and rubber band\n // canvas in synch.\n canvas_div.css('width', width)\n canvas_div.css('height', height)\n\n canvas.attr('width', width * mpl.ratio);\n canvas.attr('height', height * mpl.ratio);\n canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n\n rubberband.attr('width', width);\n rubberband.attr('height', height);\n }\n\n // Set the figure to an initial 600x600px, this will subsequently be updated\n // upon first draw.\n this._resize_canvas(600, 600);\n\n // Disable right mouse context menu.\n $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n return false;\n });\n\n function set_focus () {\n canvas.focus();\n canvas_div.focus();\n }\n\n window.setTimeout(set_focus, 100);\n}\n\nmpl.figure.prototype._init_toolbar = function() {\n var fig = this;\n\n var nav_element = $('<div/>')\n nav_element.attr('style', 'width: 100%');\n this.root.append(nav_element);\n\n // Define a callback function for later on.\n function toolbar_event(event) {\n return fig.toolbar_button_onclick(event['data']);\n }\n function toolbar_mouse_event(event) {\n return fig.toolbar_button_onmouseover(event['data']);\n }\n\n for(var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n // put a spacer in here.\n continue;\n }\n var button = $('<button/>');\n button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n 'ui-button-icon-only');\n button.attr('role', 'button');\n button.attr('aria-disabled', 'false');\n button.click(method_name, toolbar_event);\n button.mouseover(tooltip, toolbar_mouse_event);\n\n var icon_img = $('<span/>');\n icon_img.addClass('ui-button-icon-primary ui-icon');\n icon_img.addClass(image);\n icon_img.addClass('ui-corner-all');\n\n var tooltip_span = $('<span/>');\n tooltip_span.addClass('ui-button-text');\n tooltip_span.html(tooltip);\n\n button.append(icon_img);\n button.append(tooltip_span);\n\n nav_element.append(button);\n }\n\n var fmt_picker_span = $('<span/>');\n\n var fmt_picker = $('<select/>');\n fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n fmt_picker_span.append(fmt_picker);\n nav_element.append(fmt_picker_span);\n this.format_dropdown = fmt_picker[0];\n\n for (var ind in mpl.extensions) {\n var fmt = mpl.extensions[ind];\n var option = $(\n '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n fmt_picker.append(option)\n }\n\n // Add hover states to the ui-buttons\n $( \".ui-button\" ).hover(\n function() { $(this).addClass(\"ui-state-hover\");},\n function() { $(this).removeClass(\"ui-state-hover\");}\n );\n\n var status_bar = $('<span class=\"mpl-message\"/>');\n nav_element.append(status_bar);\n this.message = status_bar[0];\n}\n\nmpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n // which will in turn request a refresh of the image.\n this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n}\n\nmpl.figure.prototype.send_message = function(type, properties) {\n properties['type'] = type;\n properties['figure_id'] = this.id;\n this.ws.send(JSON.stringify(properties));\n}\n\nmpl.figure.prototype.send_draw_message = function() {\n if (!this.waiting) {\n this.waiting = true;\n this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n }\n}\n\n\nmpl.figure.prototype.handle_save = function(fig, msg) {\n var format_dropdown = fig.format_dropdown;\n var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n fig.ondownload(fig, format);\n}\n\n\nmpl.figure.prototype.handle_resize = function(fig, msg) {\n var size = msg['size'];\n if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n fig._resize_canvas(size[0], size[1]);\n fig.send_message(\"refresh\", {});\n };\n}\n\nmpl.figure.prototype.handle_rubberband = function(fig, msg) {\n var x0 = msg['x0'] / mpl.ratio;\n var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n var x1 = msg['x1'] / mpl.ratio;\n var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n x0 = Math.floor(x0) + 0.5;\n y0 = Math.floor(y0) + 0.5;\n x1 = Math.floor(x1) + 0.5;\n y1 = Math.floor(y1) + 0.5;\n var min_x = Math.min(x0, x1);\n var min_y = Math.min(y0, y1);\n var width = Math.abs(x1 - x0);\n var height = Math.abs(y1 - y0);\n\n fig.rubberband_context.clearRect(\n 0, 0, fig.canvas.width, fig.canvas.height);\n\n fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n}\n\nmpl.figure.prototype.handle_figure_label = function(fig, msg) {\n // Updates the figure title.\n fig.header.textContent = msg['label'];\n}\n\nmpl.figure.prototype.handle_cursor = function(fig, msg) {\n var cursor = msg['cursor'];\n switch(cursor)\n {\n case 0:\n cursor = 'pointer';\n break;\n case 1:\n cursor = 'default';\n break;\n case 2:\n cursor = 'crosshair';\n break;\n case 3:\n cursor = 'move';\n break;\n }\n fig.rubberband_canvas.style.cursor = cursor;\n}\n\nmpl.figure.prototype.handle_message = function(fig, msg) {\n fig.message.textContent = msg['message'];\n}\n\nmpl.figure.prototype.handle_draw = function(fig, msg) {\n // Request the server to send over a new figure.\n fig.send_draw_message();\n}\n\nmpl.figure.prototype.handle_image_mode = function(fig, msg) {\n fig.image_mode = msg['mode'];\n}\n\nmpl.figure.prototype.updated_canvas_event = function() {\n // Called whenever the canvas gets updated.\n this.send_message(\"ack\", {});\n}\n\n// A function to construct a web socket function for onmessage handling.\n// Called in the figure constructor.\nmpl.figure.prototype._make_on_message_function = function(fig) {\n return function socket_on_message(evt) {\n if (evt.data instanceof Blob) {\n /* FIXME: We get \"Resource interpreted as Image but\n * transferred with MIME type text/plain:\" errors on\n * Chrome. But how to set the MIME type? It doesn't seem\n * to be part of the websocket stream */\n evt.data.type = \"image/png\";\n\n /* Free the memory for the previous frames */\n if (fig.imageObj.src) {\n (window.URL || window.webkitURL).revokeObjectURL(\n fig.imageObj.src);\n }\n\n fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n evt.data);\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n }\n else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n fig.imageObj.src = evt.data;\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n }\n\n var msg = JSON.parse(evt.data);\n var msg_type = msg['type'];\n\n // Call the \"handle_{type}\" callback, which takes\n // the figure and JSON message as its only arguments.\n try {\n var callback = fig[\"handle_\" + msg_type];\n } catch (e) {\n console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n return;\n }\n\n if (callback) {\n try {\n // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n callback(fig, msg);\n } catch (e) {\n console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n }\n }\n };\n}\n\n// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\nmpl.findpos = function(e) {\n //this section is from http://www.quirksmode.org/js/events_properties.html\n var targ;\n if (!e)\n e = window.event;\n if (e.target)\n targ = e.target;\n else if (e.srcElement)\n targ = e.srcElement;\n if (targ.nodeType == 3) // defeat Safari bug\n targ = targ.parentNode;\n\n // jQuery normalizes the pageX and pageY\n // pageX,Y are the mouse positions relative to the document\n // offset() returns the position of the element relative to the document\n var x = e.pageX - $(targ).offset().left;\n var y = e.pageY - $(targ).offset().top;\n\n return {\"x\": x, \"y\": y};\n};\n\n/*\n * return a copy of an object with only non-object keys\n * we need this to avoid circular references\n * http://stackoverflow.com/a/24161582/3208463\n */\nfunction simpleKeys (original) {\n return Object.keys(original).reduce(function (obj, key) {\n if (typeof original[key] !== 'object')\n obj[key] = original[key]\n return obj;\n }, {});\n}\n\nmpl.figure.prototype.mouse_event = function(event, name) {\n var canvas_pos = mpl.findpos(event)\n\n if (name === 'button_press')\n {\n this.canvas.focus();\n this.canvas_div.focus();\n }\n\n var x = canvas_pos.x * mpl.ratio;\n var y = canvas_pos.y * mpl.ratio;\n\n this.send_message(name, {x: x, y: y, button: event.button,\n step: event.step,\n guiEvent: simpleKeys(event)});\n\n /* This prevents the web browser from automatically changing to\n * the text insertion cursor when the button is pressed. We want\n * to control all of the cursor setting manually through the\n * 'cursor' event from matplotlib */\n event.preventDefault();\n return false;\n}\n\nmpl.figure.prototype._key_event_extra = function(event, name) {\n // Handle any extra behaviour associated with a key event\n}\n\nmpl.figure.prototype.key_event = function(event, name) {\n\n // Prevent repeat events\n if (name == 'key_press')\n {\n if (event.which === this._key)\n return;\n else\n this._key = event.which;\n }\n if (name == 'key_release')\n this._key = null;\n\n var value = '';\n if (event.ctrlKey && event.which != 17)\n value += \"ctrl+\";\n if (event.altKey && event.which != 18)\n value += \"alt+\";\n if (event.shiftKey && event.which != 16)\n value += \"shift+\";\n\n value += 'k';\n value += event.which.toString();\n\n this._key_event_extra(event, name);\n\n this.send_message(name, {key: value,\n guiEvent: simpleKeys(event)});\n return false;\n}\n\nmpl.figure.prototype.toolbar_button_onclick = function(name) {\n if (name == 'download') {\n this.handle_save(this, null);\n } else {\n this.send_message(\"toolbar_button\", {name: name});\n }\n};\n\nmpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n this.message.textContent = tooltip;\n};\nmpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n\nmpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n\nmpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n // Create a \"websocket\"-like object which calls the given IPython comm\n // object with the appropriate methods. Currently this is a non binary\n // socket, so there is still some room for performance tuning.\n var ws = {};\n\n ws.close = function() {\n comm.close()\n };\n ws.send = function(m) {\n //console.log('sending', m);\n comm.send(m);\n };\n // Register the callback with on_msg.\n comm.on_msg(function(msg) {\n //console.log('receiving', msg['content']['data'], msg);\n // Pass the mpl event to the overriden (by mpl) onmessage function.\n ws.onmessage(msg['content']['data'])\n });\n return ws;\n}\n\nmpl.mpl_figure_comm = function(comm, msg) {\n // This is the function which gets called when the mpl process\n // starts-up an IPython Comm through the \"matplotlib\" channel.\n\n var id = msg.content.data.id;\n // Get hold of the div created by the display call when the Comm\n // socket was opened in Python.\n var element = $(\"#\" + id);\n var ws_proxy = comm_websocket_adapter(comm)\n\n function ondownload(figure, format) {\n window.open(figure.imageObj.src);\n }\n\n var fig = new mpl.figure(id, ws_proxy,\n ondownload,\n element.get(0));\n\n // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n // web socket which is closed, not our websocket->open comm proxy.\n ws_proxy.onopen();\n\n fig.parent_element = element.get(0);\n fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n if (!fig.cell_info) {\n console.error(\"Failed to find cell for figure\", id, fig);\n return;\n }\n\n var output_index = fig.cell_info[2]\n var cell = fig.cell_info[0];\n\n};\n\nmpl.figure.prototype.handle_close = function(fig, msg) {\n var width = fig.canvas.width/mpl.ratio\n fig.root.unbind('remove')\n\n // Update the output cell to use the data from the current canvas.\n fig.push_to_output();\n var dataURL = fig.canvas.toDataURL();\n // Re-enable the keyboard manager in IPython - without this line, in FF,\n // the notebook keyboard shortcuts fail.\n IPython.keyboard_manager.enable()\n $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n fig.close_ws(fig, msg);\n}\n\nmpl.figure.prototype.close_ws = function(fig, msg){\n fig.send_message('closing', msg);\n // fig.ws.close()\n}\n\nmpl.figure.prototype.push_to_output = function(remove_interactive) {\n // Turn the data on the canvas into data in the output cell.\n var width = this.canvas.width/mpl.ratio\n var dataURL = this.canvas.toDataURL();\n this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n}\n\nmpl.figure.prototype.updated_canvas_event = function() {\n // Tell IPython that the notebook contents must change.\n IPython.notebook.set_dirty(true);\n this.send_message(\"ack\", {});\n var fig = this;\n // Wait a second, then push the new image to the DOM so\n // that it is saved nicely (might be nice to debounce this).\n setTimeout(function () { fig.push_to_output() }, 1000);\n}\n\nmpl.figure.prototype._init_toolbar = function() {\n var fig = this;\n\n var nav_element = $('<div/>')\n nav_element.attr('style', 'width: 100%');\n this.root.append(nav_element);\n\n // Define a callback function for later on.\n function toolbar_event(event) {\n return fig.toolbar_button_onclick(event['data']);\n }\n function toolbar_mouse_event(event) {\n return fig.toolbar_button_onmouseover(event['data']);\n }\n\n for(var toolbar_ind in mpl.toolbar_items){\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) { continue; };\n\n var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n button.click(method_name, toolbar_event);\n button.mouseover(tooltip, toolbar_mouse_event);\n nav_element.append(button);\n }\n\n // Add the status bar.\n var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n nav_element.append(status_bar);\n this.message = status_bar[0];\n\n // Add the close button to the window.\n var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n button.click(function (evt) { fig.handle_close(fig, {}); } );\n button.mouseover('Stop Interaction', toolbar_mouse_event);\n buttongrp.append(button);\n var titlebar = this.root.find($('.ui-dialog-titlebar'));\n titlebar.prepend(buttongrp);\n}\n\nmpl.figure.prototype._root_extra_style = function(el){\n var fig = this\n el.on(\"remove\", function(){\n\tfig.close_ws(fig, {});\n });\n}\n\nmpl.figure.prototype._canvas_extra_style = function(el){\n // this is important to make the div 'focusable\n el.attr('tabindex', 0)\n // reach out to IPython and tell the keyboard manager to turn it's self\n // off when our div gets focus\n\n // location in version 3\n if (IPython.notebook.keyboard_manager) {\n IPython.notebook.keyboard_manager.register_events(el);\n }\n else {\n // location in version 2\n IPython.keyboard_manager.register_events(el);\n }\n\n}\n\nmpl.figure.prototype._key_event_extra = function(event, name) {\n var manager = IPython.notebook.keyboard_manager;\n if (!manager)\n manager = IPython.keyboard_manager;\n\n // Check for shift+enter\n if (event.shiftKey && event.which == 13) {\n this.canvas_div.blur();\n // select the cell after this one\n var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n IPython.notebook.select(index + 1);\n }\n}\n\nmpl.figure.prototype.handle_save = function(fig, msg) {\n fig.ondownload(fig, null);\n}\n\n\nmpl.find_output_cell = function(html_output) {\n // Return the cell and output element which can be found *uniquely* in the notebook.\n // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n // IPython event is triggered only after the cells have been serialised, which for\n // our purposes (turning an active figure into a static one), is too late.\n var cells = IPython.notebook.get_cells();\n var ncells = cells.length;\n for (var i=0; i<ncells; i++) {\n var cell = cells[i];\n if (cell.cell_type === 'code'){\n for (var j=0; j<cell.output_area.outputs.length; j++) {\n var data = cell.output_area.outputs[j];\n if (data.data) {\n // IPython >= 3 moved mimebundle to data attribute of output\n data = data.data;\n }\n if (data['text/html'] == html_output) {\n return [cell, data, j];\n }\n }\n }\n }\n}\n\n// Register the function which deals with the matplotlib target/channel.\n// The kernel may be null if the page has been refreshed.\nif (IPython.notebook.kernel != null) {\n IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n}\n" | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "text/html": "<img src=\"\" width=\"1199.5966002008581\">", | |
| "text/plain": "<IPython.core.display.HTML object>" | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "e6207b1db799463eb5faff8eb5b274f8" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": "\n", | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "6dac1b954e964c05bb4558e4a45111a2" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": "\n", | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "58af9c1dca62425fa85e854ff51b918f" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": "\n", | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "670044ada3fc4391bfeb637c2ab419e0" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": "\n", | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "6bf7074fa37f44128e715c50cba2d25e" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": "\n", | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "4847f0e532ca4a9fb62dba2762a537c5" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": "\nOptimal bin count is 100 bins\n", | |
| "name": "stdout" | |
| } | |
| ] | |
| }, | |
| { | |
| "metadata": { | |
| "trusted": true, | |
| "scrolled": false, | |
| "ExecuteTime": { | |
| "start_time": "2017-07-10T03:59:38.797623Z", | |
| "end_time": "2017-07-10T03:59:43.356150Z" | |
| } | |
| }, | |
| "cell_type": "code", | |
| "source": "distanceMeasureSamples = 50\ndSlice = a.SampleCount // distanceMeasureSamples\nstride = (len(phaseSpaceParameters) * (len(phaseSpaceParameters) - 1)) // 2\n\nDistanceMethods = {\"cumulative\": 1, \"small_windows\": 0}\n\nmethodOfDistances = \"cumulative\"\n\nvariationSpectra = a.getVariationSpectra()\nnumberOfVariations = len(variationSpectra)\n\nvariationIndexCombinations = list(comb(list(range(numberOfVariations)), 2))\n\npearson = numpy.empty((distanceMeasureSamples, len(variationIndexCombinations), 2), dtype=\"d\")\nmodDist = numpy.empty((distanceMeasureSamples, len(variationIndexCombinations), 2), dtype=\"d\")\neuclid = numpy.empty((distanceMeasureSamples, len(variationIndexCombinations), 2), dtype=\"d\")\n\ndistMethodType = DistanceMethods[methodOfDistances.lower().strip()]\n\nfor finalTimeIndex, timeIndex in tqdm_notebook(enumerate(range(dSlice, time.shape[0] + dSlice, dSlice)), total=distanceMeasureSamples):\n if timeIndex == 0:\n startTimeIndex = 0\n else:\n startTimeIndex = timeIndex - dSlice if distMethodType == 0 else 0\n \n startTimeIndex *= stride\n endTimeIndex = timeIndex * stride\n \n for varCombIndex, (varIndex1, varIndex2) in enumerate(variationIndexCombinations):\n # Compute spectra for the deviations\n baseSpectra11, _ = numpy.histogram(variationSpectra[varIndex1][\"1st Order\"][startTimeIndex:endTimeIndex], range=(-numpy.pi, numpy.pi), bins=binCount)\n baseSpectra12, _ = numpy.histogram(variationSpectra[varIndex2][\"1st Order\"][startTimeIndex:endTimeIndex], range=(-numpy.pi, numpy.pi), bins=binCount)\n\n # Compute spectra for the derivative deviations\n baseDSpectra11, _ = numpy.histogram(variationSpectra[varIndex1][\"2nd Order\"][startTimeIndex:endTimeIndex], range=(-numpy.pi, numpy.pi), bins=binCount)\n baseDSpectra12, _ = numpy.histogram(variationSpectra[varIndex2][\"2nd Order\"][startTimeIndex:endTimeIndex], range=(-numpy.pi, numpy.pi), bins=binCount)\n\n baseSpectra11 = baseSpectra11.astype(\"d\") / fsum(baseSpectra11 * 2 * numpy.pi / binCount)\n baseSpectra12 = baseSpectra12.astype(\"d\") / fsum(baseSpectra12 * 2 * numpy.pi / binCount)\n baseDSpectra11 = baseDSpectra11.astype(\"d\") / fsum(baseDSpectra11 * 2 * numpy.pi / binCount)\n baseDSpectra12 = baseDSpectra12.astype(\"d\") / fsum(baseDSpectra12 * 2 * numpy.pi / binCount)\n\n # Similarity measures between spectra using the Pearson Correlation Coefficient\n pearson[finalTimeIndex, varCombIndex, 0] = pearsonSpectraDistance(baseSpectra11, baseSpectra12)\n pearson[finalTimeIndex, varCombIndex, 1] = pearsonSpectraDistance(baseDSpectra11, baseDSpectra12)\n\n # Similarity measures between spectra using the Pearson Correlation Coefficient\n modDist[finalTimeIndex, varCombIndex, 0] = custModuloSpectraDistance(baseSpectra11, baseSpectra12)\n modDist[finalTimeIndex, varCombIndex, 1] = custModuloSpectraDistance(baseDSpectra11, baseDSpectra12)\n\n # Similarity measures using the Euclidean Distance\n euclid[finalTimeIndex, varCombIndex, 0] = euclideanSpectraDistance(baseSpectra11, baseSpectra12)\n euclid[finalTimeIndex, varCombIndex, 1] = euclideanSpectraDistance(baseDSpectra11, baseDSpectra12)", | |
| "execution_count": 52, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "88b1c0f4eb4741388f30826e536ffedd" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": "\n", | |
| "name": "stdout" | |
| } | |
| ] | |
| }, | |
| { | |
| "metadata": { | |
| "trusted": true, | |
| "scrolled": false, | |
| "ExecuteTime": { | |
| "start_time": "2017-07-10T03:59:43.357398Z", | |
| "end_time": "2017-07-10T03:59:47.059953Z" | |
| } | |
| }, | |
| "cell_type": "code", | |
| "source": "fig = plt.figure(figsize=(18,14))\nax1 = []\nax2 = []\nax3 = []\ngs1 = matplotlib.gridspec.GridSpec(3, 2)\nax1.append(fig.add_subplot(gs1[0]))\nax2.append(fig.add_subplot(gs1[2], sharex=ax1[0], sharey=ax1[0]))\nax3.append(fig.add_subplot(gs1[4], sharex=ax2[0]))\nax1.append(fig.add_subplot(gs1[1], sharey=ax1[0]))\nax2.append(fig.add_subplot(gs1[3], sharex=ax1[1], sharey=ax2[0]))\nax3.append(fig.add_subplot(gs1[5], sharex=ax2[1], sharey=ax3[0]))\n\n\ntitles = [[\"modDist Helicity\", \"modDist Derivative Helicity\"],\n [\"PCC Helicity\", \"PCC Derivative Helicity\"],\n [\"Euclidean Dist. Helicity\", \"Euclidean Dist. Derivative Helicity\"]]\n\nprint(time[0:time.shape[0] + dSlice:dSlice].shape)\n\nfor varCombIndex in range(len(variationIndexCombinations)):\n varIndex1 = variationIndexCombinations[varCombIndex][0]\n varIndex2 = variationIndexCombinations[varCombIndex][1]\n comp1 = a[0, 2, varIndex1, \"1st Order\"].as_numpy_array()\n comp2 = a[0, 2, varIndex2, \"1st Order\"].as_numpy_array()\n if numpy.vdot(comp1, comp2) == 0:\n for i in range(0, pearson.shape[-1]):\n ax1[i].plot(time[0:time.shape[0] + dSlice:dSlice], modDist[:, varCombIndex, i], label=r\"$mE^{{\\left({}\\right)}}_{{{}{}}}$\".format(i + 1,*variationIndexCombinations[varCombIndex]), alpha=0.8)\n ax2[i].plot(time[0:time.shape[0] + dSlice:dSlice], euclid[:, varCombIndex, i], label=r\"$E^{{\\left({}\\right)}}_{{{}{}}}$\".format(i + 1,*variationIndexCombinations[varCombIndex]), alpha=0.8)\n ax3[i].plot(time[0:time.shape[0] + dSlice:dSlice], pearson[:, varCombIndex, i], label=r\"$P^{{\\left({}\\right)}}_{{{}{}}}$\".format(i + 1,*variationIndexCombinations[varCombIndex]), alpha=0.8)\n\nfor i in range(0, 2):\n ax1[i].legend(fontsize=12)\n ax2[i].legend(fontsize=12)\n ax3[i].legend(fontsize=12)\n ax1[i].grid(which='both')\n ax2[i].grid(which='both')\n ax3[i].grid(which='both')\n ax3[i].set_xlabel('Orbits')\n plt.setp(ax1[i].get_xticklabels(), visible=False)\n plt.setp(ax2[i].get_xticklabels(), visible=False)\n\nax1[0].set_ylabel('Minimised Euclid. Distance')\nax2[0].set_ylabel('Euclid. Distance')\nax3[0].set_ylabel('PCC')\nplt.setp(ax1[1].get_yticklabels(), visible=False)\nplt.setp(ax2[1].get_yticklabels(), visible=False)\nplt.setp(ax3[1].get_yticklabels(), visible=False)\n\nfig.suptitle(r\"$x_{initial} = \" + r\"{:.3f} - {}\".format(initial_x, orbit_type.title()) + r\"$\", fontsize=16)\ngs1.tight_layout(fig, rect=[0, 0.03, 1, 0.95])\n\nif savePath is not None:\n for extension in [\".png\", \".pdf\"]:\n fig.savefig(savePath + 'Spectral_Distances_Over_{}_Yrs{}'.format(time[-1], extension), dpi=200)", | |
| "execution_count": 53, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "text/plain": "<IPython.core.display.Javascript object>", | |
| "application/javascript": "/* Put everything inside the global mpl namespace */\nwindow.mpl = {};\n\n\nmpl.get_websocket_type = function() {\n if (typeof(WebSocket) !== 'undefined') {\n return WebSocket;\n } else if (typeof(MozWebSocket) !== 'undefined') {\n return MozWebSocket;\n } else {\n alert('Your browser does not have WebSocket support.' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.');\n };\n}\n\nmpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = (this.ws.binaryType != undefined);\n\n if (!this.supports_binary) {\n var warnings = document.getElementById(\"mpl-warnings\");\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent = (\n \"This browser does not support binary websocket messages. \" +\n \"Performance may be slow.\");\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = $('<div/>');\n this._root_extra_style(this.root)\n this.root.attr('style', 'display: inline-block');\n\n $(parent_element).append(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n fig.send_message(\"send_image_mode\", {});\n if (mpl.ratio != 1) {\n fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n }\n fig.send_message(\"refresh\", {});\n }\n\n this.imageObj.onload = function() {\n if (fig.image_mode == 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function() {\n this.ws.close();\n }\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n}\n\nmpl.figure.prototype._init_header = function() {\n var titlebar = $(\n '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n 'ui-helper-clearfix\"/>');\n var titletext = $(\n '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n 'text-align: center; padding: 3px;\"/>');\n titlebar.append(titletext)\n this.root.append(titlebar);\n this.header = titletext[0];\n}\n\n\n\nmpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n\n}\n\n\nmpl.figure.prototype._root_extra_style = function(canvas_div) {\n\n}\n\nmpl.figure.prototype._init_canvas = function() {\n var fig = this;\n\n var canvas_div = $('<div/>');\n\n canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n\n function canvas_keyboard_event(event) {\n return fig.key_event(event, event['data']);\n }\n\n canvas_div.keydown('key_press', canvas_keyboard_event);\n canvas_div.keyup('key_release', canvas_keyboard_event);\n this.canvas_div = canvas_div\n this._canvas_extra_style(canvas_div)\n this.root.append(canvas_div);\n\n var canvas = $('<canvas/>');\n canvas.addClass('mpl-canvas');\n canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n\n this.canvas = canvas[0];\n this.context = canvas[0].getContext(\"2d\");\n\n var backingStore = this.context.backingStorePixelRatio ||\n\tthis.context.webkitBackingStorePixelRatio ||\n\tthis.context.mozBackingStorePixelRatio ||\n\tthis.context.msBackingStorePixelRatio ||\n\tthis.context.oBackingStorePixelRatio ||\n\tthis.context.backingStorePixelRatio || 1;\n\n mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n\n var rubberband = $('<canvas/>');\n rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n\n var pass_mouse_events = true;\n\n canvas_div.resizable({\n start: function(event, ui) {\n pass_mouse_events = false;\n },\n resize: function(event, ui) {\n fig.request_resize(ui.size.width, ui.size.height);\n },\n stop: function(event, ui) {\n pass_mouse_events = true;\n fig.request_resize(ui.size.width, ui.size.height);\n },\n });\n\n function mouse_event_fn(event) {\n if (pass_mouse_events)\n return fig.mouse_event(event, event['data']);\n }\n\n rubberband.mousedown('button_press', mouse_event_fn);\n rubberband.mouseup('button_release', mouse_event_fn);\n // Throttle sequential mouse events to 1 every 20ms.\n rubberband.mousemove('motion_notify', mouse_event_fn);\n\n rubberband.mouseenter('figure_enter', mouse_event_fn);\n rubberband.mouseleave('figure_leave', mouse_event_fn);\n\n canvas_div.on(\"wheel\", function (event) {\n event = event.originalEvent;\n event['data'] = 'scroll'\n if (event.deltaY < 0) {\n event.step = 1;\n } else {\n event.step = -1;\n }\n mouse_event_fn(event);\n });\n\n canvas_div.append(canvas);\n canvas_div.append(rubberband);\n\n this.rubberband = rubberband;\n this.rubberband_canvas = rubberband[0];\n this.rubberband_context = rubberband[0].getContext(\"2d\");\n this.rubberband_context.strokeStyle = \"#000000\";\n\n this._resize_canvas = function(width, height) {\n // Keep the size of the canvas, canvas container, and rubber band\n // canvas in synch.\n canvas_div.css('width', width)\n canvas_div.css('height', height)\n\n canvas.attr('width', width * mpl.ratio);\n canvas.attr('height', height * mpl.ratio);\n canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n\n rubberband.attr('width', width);\n rubberband.attr('height', height);\n }\n\n // Set the figure to an initial 600x600px, this will subsequently be updated\n // upon first draw.\n this._resize_canvas(600, 600);\n\n // Disable right mouse context menu.\n $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n return false;\n });\n\n function set_focus () {\n canvas.focus();\n canvas_div.focus();\n }\n\n window.setTimeout(set_focus, 100);\n}\n\nmpl.figure.prototype._init_toolbar = function() {\n var fig = this;\n\n var nav_element = $('<div/>')\n nav_element.attr('style', 'width: 100%');\n this.root.append(nav_element);\n\n // Define a callback function for later on.\n function toolbar_event(event) {\n return fig.toolbar_button_onclick(event['data']);\n }\n function toolbar_mouse_event(event) {\n return fig.toolbar_button_onmouseover(event['data']);\n }\n\n for(var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n // put a spacer in here.\n continue;\n }\n var button = $('<button/>');\n button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n 'ui-button-icon-only');\n button.attr('role', 'button');\n button.attr('aria-disabled', 'false');\n button.click(method_name, toolbar_event);\n button.mouseover(tooltip, toolbar_mouse_event);\n\n var icon_img = $('<span/>');\n icon_img.addClass('ui-button-icon-primary ui-icon');\n icon_img.addClass(image);\n icon_img.addClass('ui-corner-all');\n\n var tooltip_span = $('<span/>');\n tooltip_span.addClass('ui-button-text');\n tooltip_span.html(tooltip);\n\n button.append(icon_img);\n button.append(tooltip_span);\n\n nav_element.append(button);\n }\n\n var fmt_picker_span = $('<span/>');\n\n var fmt_picker = $('<select/>');\n fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n fmt_picker_span.append(fmt_picker);\n nav_element.append(fmt_picker_span);\n this.format_dropdown = fmt_picker[0];\n\n for (var ind in mpl.extensions) {\n var fmt = mpl.extensions[ind];\n var option = $(\n '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n fmt_picker.append(option)\n }\n\n // Add hover states to the ui-buttons\n $( \".ui-button\" ).hover(\n function() { $(this).addClass(\"ui-state-hover\");},\n function() { $(this).removeClass(\"ui-state-hover\");}\n );\n\n var status_bar = $('<span class=\"mpl-message\"/>');\n nav_element.append(status_bar);\n this.message = status_bar[0];\n}\n\nmpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n // which will in turn request a refresh of the image.\n this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n}\n\nmpl.figure.prototype.send_message = function(type, properties) {\n properties['type'] = type;\n properties['figure_id'] = this.id;\n this.ws.send(JSON.stringify(properties));\n}\n\nmpl.figure.prototype.send_draw_message = function() {\n if (!this.waiting) {\n this.waiting = true;\n this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n }\n}\n\n\nmpl.figure.prototype.handle_save = function(fig, msg) {\n var format_dropdown = fig.format_dropdown;\n var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n fig.ondownload(fig, format);\n}\n\n\nmpl.figure.prototype.handle_resize = function(fig, msg) {\n var size = msg['size'];\n if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n fig._resize_canvas(size[0], size[1]);\n fig.send_message(\"refresh\", {});\n };\n}\n\nmpl.figure.prototype.handle_rubberband = function(fig, msg) {\n var x0 = msg['x0'] / mpl.ratio;\n var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n var x1 = msg['x1'] / mpl.ratio;\n var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n x0 = Math.floor(x0) + 0.5;\n y0 = Math.floor(y0) + 0.5;\n x1 = Math.floor(x1) + 0.5;\n y1 = Math.floor(y1) + 0.5;\n var min_x = Math.min(x0, x1);\n var min_y = Math.min(y0, y1);\n var width = Math.abs(x1 - x0);\n var height = Math.abs(y1 - y0);\n\n fig.rubberband_context.clearRect(\n 0, 0, fig.canvas.width, fig.canvas.height);\n\n fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n}\n\nmpl.figure.prototype.handle_figure_label = function(fig, msg) {\n // Updates the figure title.\n fig.header.textContent = msg['label'];\n}\n\nmpl.figure.prototype.handle_cursor = function(fig, msg) {\n var cursor = msg['cursor'];\n switch(cursor)\n {\n case 0:\n cursor = 'pointer';\n break;\n case 1:\n cursor = 'default';\n break;\n case 2:\n cursor = 'crosshair';\n break;\n case 3:\n cursor = 'move';\n break;\n }\n fig.rubberband_canvas.style.cursor = cursor;\n}\n\nmpl.figure.prototype.handle_message = function(fig, msg) {\n fig.message.textContent = msg['message'];\n}\n\nmpl.figure.prototype.handle_draw = function(fig, msg) {\n // Request the server to send over a new figure.\n fig.send_draw_message();\n}\n\nmpl.figure.prototype.handle_image_mode = function(fig, msg) {\n fig.image_mode = msg['mode'];\n}\n\nmpl.figure.prototype.updated_canvas_event = function() {\n // Called whenever the canvas gets updated.\n this.send_message(\"ack\", {});\n}\n\n// A function to construct a web socket function for onmessage handling.\n// Called in the figure constructor.\nmpl.figure.prototype._make_on_message_function = function(fig) {\n return function socket_on_message(evt) {\n if (evt.data instanceof Blob) {\n /* FIXME: We get \"Resource interpreted as Image but\n * transferred with MIME type text/plain:\" errors on\n * Chrome. But how to set the MIME type? It doesn't seem\n * to be part of the websocket stream */\n evt.data.type = \"image/png\";\n\n /* Free the memory for the previous frames */\n if (fig.imageObj.src) {\n (window.URL || window.webkitURL).revokeObjectURL(\n fig.imageObj.src);\n }\n\n fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n evt.data);\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n }\n else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n fig.imageObj.src = evt.data;\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n }\n\n var msg = JSON.parse(evt.data);\n var msg_type = msg['type'];\n\n // Call the \"handle_{type}\" callback, which takes\n // the figure and JSON message as its only arguments.\n try {\n var callback = fig[\"handle_\" + msg_type];\n } catch (e) {\n console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n return;\n }\n\n if (callback) {\n try {\n // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n callback(fig, msg);\n } catch (e) {\n console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n }\n }\n };\n}\n\n// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\nmpl.findpos = function(e) {\n //this section is from http://www.quirksmode.org/js/events_properties.html\n var targ;\n if (!e)\n e = window.event;\n if (e.target)\n targ = e.target;\n else if (e.srcElement)\n targ = e.srcElement;\n if (targ.nodeType == 3) // defeat Safari bug\n targ = targ.parentNode;\n\n // jQuery normalizes the pageX and pageY\n // pageX,Y are the mouse positions relative to the document\n // offset() returns the position of the element relative to the document\n var x = e.pageX - $(targ).offset().left;\n var y = e.pageY - $(targ).offset().top;\n\n return {\"x\": x, \"y\": y};\n};\n\n/*\n * return a copy of an object with only non-object keys\n * we need this to avoid circular references\n * http://stackoverflow.com/a/24161582/3208463\n */\nfunction simpleKeys (original) {\n return Object.keys(original).reduce(function (obj, key) {\n if (typeof original[key] !== 'object')\n obj[key] = original[key]\n return obj;\n }, {});\n}\n\nmpl.figure.prototype.mouse_event = function(event, name) {\n var canvas_pos = mpl.findpos(event)\n\n if (name === 'button_press')\n {\n this.canvas.focus();\n this.canvas_div.focus();\n }\n\n var x = canvas_pos.x * mpl.ratio;\n var y = canvas_pos.y * mpl.ratio;\n\n this.send_message(name, {x: x, y: y, button: event.button,\n step: event.step,\n guiEvent: simpleKeys(event)});\n\n /* This prevents the web browser from automatically changing to\n * the text insertion cursor when the button is pressed. We want\n * to control all of the cursor setting manually through the\n * 'cursor' event from matplotlib */\n event.preventDefault();\n return false;\n}\n\nmpl.figure.prototype._key_event_extra = function(event, name) {\n // Handle any extra behaviour associated with a key event\n}\n\nmpl.figure.prototype.key_event = function(event, name) {\n\n // Prevent repeat events\n if (name == 'key_press')\n {\n if (event.which === this._key)\n return;\n else\n this._key = event.which;\n }\n if (name == 'key_release')\n this._key = null;\n\n var value = '';\n if (event.ctrlKey && event.which != 17)\n value += \"ctrl+\";\n if (event.altKey && event.which != 18)\n value += \"alt+\";\n if (event.shiftKey && event.which != 16)\n value += \"shift+\";\n\n value += 'k';\n value += event.which.toString();\n\n this._key_event_extra(event, name);\n\n this.send_message(name, {key: value,\n guiEvent: simpleKeys(event)});\n return false;\n}\n\nmpl.figure.prototype.toolbar_button_onclick = function(name) {\n if (name == 'download') {\n this.handle_save(this, null);\n } else {\n this.send_message(\"toolbar_button\", {name: name});\n }\n};\n\nmpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n this.message.textContent = tooltip;\n};\nmpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n\nmpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n\nmpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n // Create a \"websocket\"-like object which calls the given IPython comm\n // object with the appropriate methods. Currently this is a non binary\n // socket, so there is still some room for performance tuning.\n var ws = {};\n\n ws.close = function() {\n comm.close()\n };\n ws.send = function(m) {\n //console.log('sending', m);\n comm.send(m);\n };\n // Register the callback with on_msg.\n comm.on_msg(function(msg) {\n //console.log('receiving', msg['content']['data'], msg);\n // Pass the mpl event to the overriden (by mpl) onmessage function.\n ws.onmessage(msg['content']['data'])\n });\n return ws;\n}\n\nmpl.mpl_figure_comm = function(comm, msg) {\n // This is the function which gets called when the mpl process\n // starts-up an IPython Comm through the \"matplotlib\" channel.\n\n var id = msg.content.data.id;\n // Get hold of the div created by the display call when the Comm\n // socket was opened in Python.\n var element = $(\"#\" + id);\n var ws_proxy = comm_websocket_adapter(comm)\n\n function ondownload(figure, format) {\n window.open(figure.imageObj.src);\n }\n\n var fig = new mpl.figure(id, ws_proxy,\n ondownload,\n element.get(0));\n\n // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n // web socket which is closed, not our websocket->open comm proxy.\n ws_proxy.onopen();\n\n fig.parent_element = element.get(0);\n fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n if (!fig.cell_info) {\n console.error(\"Failed to find cell for figure\", id, fig);\n return;\n }\n\n var output_index = fig.cell_info[2]\n var cell = fig.cell_info[0];\n\n};\n\nmpl.figure.prototype.handle_close = function(fig, msg) {\n var width = fig.canvas.width/mpl.ratio\n fig.root.unbind('remove')\n\n // Update the output cell to use the data from the current canvas.\n fig.push_to_output();\n var dataURL = fig.canvas.toDataURL();\n // Re-enable the keyboard manager in IPython - without this line, in FF,\n // the notebook keyboard shortcuts fail.\n IPython.keyboard_manager.enable()\n $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n fig.close_ws(fig, msg);\n}\n\nmpl.figure.prototype.close_ws = function(fig, msg){\n fig.send_message('closing', msg);\n // fig.ws.close()\n}\n\nmpl.figure.prototype.push_to_output = function(remove_interactive) {\n // Turn the data on the canvas into data in the output cell.\n var width = this.canvas.width/mpl.ratio\n var dataURL = this.canvas.toDataURL();\n this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n}\n\nmpl.figure.prototype.updated_canvas_event = function() {\n // Tell IPython that the notebook contents must change.\n IPython.notebook.set_dirty(true);\n this.send_message(\"ack\", {});\n var fig = this;\n // Wait a second, then push the new image to the DOM so\n // that it is saved nicely (might be nice to debounce this).\n setTimeout(function () { fig.push_to_output() }, 1000);\n}\n\nmpl.figure.prototype._init_toolbar = function() {\n var fig = this;\n\n var nav_element = $('<div/>')\n nav_element.attr('style', 'width: 100%');\n this.root.append(nav_element);\n\n // Define a callback function for later on.\n function toolbar_event(event) {\n return fig.toolbar_button_onclick(event['data']);\n }\n function toolbar_mouse_event(event) {\n return fig.toolbar_button_onmouseover(event['data']);\n }\n\n for(var toolbar_ind in mpl.toolbar_items){\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) { continue; };\n\n var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n button.click(method_name, toolbar_event);\n button.mouseover(tooltip, toolbar_mouse_event);\n nav_element.append(button);\n }\n\n // Add the status bar.\n var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n nav_element.append(status_bar);\n this.message = status_bar[0];\n\n // Add the close button to the window.\n var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n button.click(function (evt) { fig.handle_close(fig, {}); } );\n button.mouseover('Stop Interaction', toolbar_mouse_event);\n buttongrp.append(button);\n var titlebar = this.root.find($('.ui-dialog-titlebar'));\n titlebar.prepend(buttongrp);\n}\n\nmpl.figure.prototype._root_extra_style = function(el){\n var fig = this\n el.on(\"remove\", function(){\n\tfig.close_ws(fig, {});\n });\n}\n\nmpl.figure.prototype._canvas_extra_style = function(el){\n // this is important to make the div 'focusable\n el.attr('tabindex', 0)\n // reach out to IPython and tell the keyboard manager to turn it's self\n // off when our div gets focus\n\n // location in version 3\n if (IPython.notebook.keyboard_manager) {\n IPython.notebook.keyboard_manager.register_events(el);\n }\n else {\n // location in version 2\n IPython.keyboard_manager.register_events(el);\n }\n\n}\n\nmpl.figure.prototype._key_event_extra = function(event, name) {\n var manager = IPython.notebook.keyboard_manager;\n if (!manager)\n manager = IPython.keyboard_manager;\n\n // Check for shift+enter\n if (event.shiftKey && event.which == 13) {\n this.canvas_div.blur();\n // select the cell after this one\n var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n IPython.notebook.select(index + 1);\n }\n}\n\nmpl.figure.prototype.handle_save = function(fig, msg) {\n fig.ondownload(fig, null);\n}\n\n\nmpl.find_output_cell = function(html_output) {\n // Return the cell and output element which can be found *uniquely* in the notebook.\n // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n // IPython event is triggered only after the cells have been serialised, which for\n // our purposes (turning an active figure into a static one), is too late.\n var cells = IPython.notebook.get_cells();\n var ncells = cells.length;\n for (var i=0; i<ncells; i++) {\n var cell = cells[i];\n if (cell.cell_type === 'code'){\n for (var j=0; j<cell.output_area.outputs.length; j++) {\n var data = cell.output_area.outputs[j];\n if (data.data) {\n // IPython >= 3 moved mimebundle to data attribute of output\n data = data.data;\n }\n if (data['text/html'] == html_output) {\n return [cell, data, j];\n }\n }\n }\n }\n}\n\n// Register the function which deals with the matplotlib target/channel.\n// The kernel may be null if the page has been refreshed.\nif (IPython.notebook.kernel != null) {\n IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n}\n" | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "text/html": "<img src=\"\" width=\"1799.798261632895\">", | |
| "text/plain": "<IPython.core.display.HTML object>" | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": "(50,)\n", | |
| "name": "stdout" | |
| } | |
| ] | |
| }, | |
| { | |
| "metadata": { | |
| "trusted": true, | |
| "ExecuteTime": { | |
| "start_time": "2017-07-10T03:59:47.062852Z", | |
| "end_time": "2017-07-10T03:59:48.381292Z" | |
| } | |
| }, | |
| "cell_type": "code", | |
| "source": "# Computing average distance between 1st order deviations\n\nAvg_Deviation_Separation = []\nAvg_Deviation_Sep_Derivative = []\nwindowWidth = 0\n\nfor varIndex1, varIndex2 in tqdm_notebook(variationIndexCombinations, total=len(variationIndexCombinations)):\n deviationIterable = tqdm_notebook(zip(a[:, 2, varIndex1, \"1st Order\"], a[:, 2, varIndex2, \"1st Order\"], \n a[:, 2, varIndex1, \"2nd Order\"], a[:, 2, varIndex2, \"2nd Order\"]), total=len(a[:, 2, varIndex1, \"1st Order\"]))\n Avg_Deviation_Separation.append([])\n Avg_Deviation_Sep_Derivative.append([])\n for dev1, dev2, ddev1, ddev2 in deviationIterable:\n dev1, dev2, ddev1, ddev2 = dev1.as_numpy_array(), dev2.as_numpy_array(), ddev1.as_numpy_array(), ddev2.as_numpy_array()\n \n curDev1Norm = numpy.linalg.norm(dev1)\n curDev2Norm = numpy.linalg.norm(dev2)\n curDDev1Norm = numpy.linalg.norm(ddev1)\n curDDev2Norm = numpy.linalg.norm(ddev2)\n \n zerArray = numpy.zeros(ddev2.shape, dtype='d')\n ddev1, ddev2 = zerArray if curDDev1Norm == 0 else ddev1 / curDDev1Norm, zerArray if curDDev2Norm == 0 else ddev2 / curDDev2Norm\n \n Avg_Deviation_Separation[-1].append(numpy.array((0 if curDev1Norm == 0 else dev1 / curDev1Norm, 0 if curDev2Norm == 0 else dev2 / curDev2Norm)))\n \n Avg_Deviation_Sep_Derivative[-1].append(numpy.array((ddev1, ddev2)))\n# Avg_Deviation_Sep_Derivative[-1].append(numpy.array((zerArray if curDev1Norm == 0 else (ddev1 - dev1 / curDev1Norm), zerArray if curDev2Norm == 0 else (ddev2 - dev2 / curDev2Norm))))\n \nAvg_Deviation_Separation = numpy.array(Avg_Deviation_Separation)\nAvg_Deviation_Sep_Derivative = numpy.array(Avg_Deviation_Sep_Derivative)\n\nAvg_Deviation_Separation = runningMeanFast(Avg_Deviation_Separation, windowWidth, axis=1)\nAvg_Deviation_Sep_Derivative = runningMeanFast(Avg_Deviation_Sep_Derivative, windowWidth, axis=1)", | |
| "execution_count": 54, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "4eebea3b7ac84819b9f5be69ac86b029" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "ccb8d60661364a58a04ff6018987cc6d" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "5ef27bd69436424b829ac51850807e32" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "52e4e9db2e4245a38bc7149895bf6e0a" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "3af9376ffd80413d90be78640ccef2b0" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "122f83be51314f0a8e5be8442f716cc8" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "51b6f3fa374648acb84cb67ce053ab33" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "89f244b1e1da4b1a9efe36b9f265fc99" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "7e46b845bc9f43ca817a1e82db280a70" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "901a921c7e01451080549d8ca13d2bd4" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "cc206c1cd5e74ac487b9e03f70f87ba7" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "ee11c921f046415783b6e876d67ed5c0" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "e0a4e91aaaa04be4984414b75e18fab1" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "ac3507fa38a1421299f0722a26983511" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "c813176479cf4d218d2eee47f03d1936" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "a6ee47712c9d4c82bd0813678fc53981" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": "\n", | |
| "name": "stdout" | |
| } | |
| ] | |
| }, | |
| { | |
| "metadata": { | |
| "trusted": true, | |
| "scrolled": false, | |
| "ExecuteTime": { | |
| "start_time": "2017-07-10T03:59:48.385654Z", | |
| "end_time": "2017-07-10T03:59:51.635055Z" | |
| } | |
| }, | |
| "cell_type": "code", | |
| "source": "fig = plt.figure(figsize=(14,10))\nax2 = fig.add_subplot(212)\nax1 = fig.add_subplot(211, sharex=ax2) \nif windowWidth < 0:\n plotTime = numpy.concatenate((time[:-windowWidth//2+1], time[windowWidth//2:]))\nelif 0 < windowWidth <= 2:\n plotTime = time[windowWidth - 1:]\nelse:\n plotTime = time\n\nfor varCombIndex in range(len(variationIndexCombinations)):\n # Deviation Plots - Magnitude\n comp1 = r\"\\left<\\frac{{d \\mathbf{{x}}}}{{d \\alpha}}\\right>_{arg2}\".format(arg2=variationIndexCombinations[varCombIndex][0])\n comp2 = r\"\\left<\\frac{{d \\mathbf{{x}}}}{{d \\alpha}}\\right>_{arg2}\".format(arg2=variationIndexCombinations[varCombIndex][1])\n varIndex1 = variationIndexCombinations[varCombIndex][0]\n varIndex2 = variationIndexCombinations[varCombIndex][1]\n if numpy.vdot(a[0, 2, variationIndexCombinations[varCombIndex][0], \"1st Order\"].as_numpy_array(), a[0, 2, variationIndexCombinations[varCombIndex][1], \"1st Order\"].as_numpy_array()) == 0:\n ax1.plot(plotTime, numpy.linalg.norm(Avg_Deviation_Separation[varIndex1, :, 0] - Avg_Deviation_Separation[varIndex2, :, 0], axis=1), alpha=1, \n label=r\"${} - {}$\".format(comp1, comp2))\n\n # Derivative Deviation Plots - Magnitude\n ax2.plot(plotTime, numpy.linalg.norm(Avg_Deviation_Sep_Derivative[varIndex1, :, 1] - Avg_Deviation_Sep_Derivative[varIndex2, :, 1], axis=1), alpha=1, \n label=r\"$\\left||\\partial _{{\\alpha}} {arg1} - \\partial _{{\\alpha}} {arg2} \\right||$\".format(arg1=comp1, arg2=comp2))\n\n if len(variationIndexCombinations) <= 2:\n for i in range(Avg_Deviation_Separation.shape[2]):\n comp1 = r\"\\left<\\frac{{d \\mathbf{{x}}_{arg1}}}{{d \\alpha}}\\right>_{arg2}\".format(arg1=i, arg2=variationIndexCombinations[varCombIndex][0])\n comp2 = r\"\\left<\\frac{{d \\mathbf{{x}}_{arg1}}}{{d \\alpha}}\\right>_{arg2}\".format(arg1=i, arg2=variationIndexCombinations[varCombIndex][1])\n # Deviation Plots - Compenentwise\n ax1.plot(plotTime, numpy.abs(Avg_Deviation_Separation[varIndex1, :, 0] - Avg_Deviation_Separation[varIndex2, :, 0])[:, i], alpha=0.85, \n label=r\"${} - {}$\".format(comp1, comp2))\n\n # Derivative Deviation Plots - Componentwise\n ax2.plot(plotTime, numpy.abs(Avg_Deviation_Sep_Derivative[varIndex1, :, 0] - Avg_Deviation_Sep_Derivative[varIndex2, :, 0])[:, i], alpha=0.85, \n label=r\"$\\partial _{{\\alpha}} {arg1} - \\partial _{{\\alpha}} {arg2}$\".format(arg1=comp1, arg2=comp2))\n\n# Titles\nax1.set_title(r\"$x_{{initial}} = {}$ - {}\".format(initial_x, orbit_type.title()))\n# ax2.set_title(r\"Average Derivative Deviation\")\nax2.set_xlabel(r\"Number of Orbits\")\nax1.set_ylabel(r\"$\\left| \\ Avg.\\ 1^{st}\\ Order\\ Deviations\\ \\right|$\")\nax2.set_ylabel(r\"$\\left| \\ Derivative\\ of\\ Avg.\\ 1^{st}\\ Order\\ Deviations\\ \\right|$\")\n\n# Formatting\nax2.set_xscale('log')\nax1.set_yscale('log')\nax2.set_yscale('log')\nax1.grid(which='major')\nax2.grid(which='major')\nax1.legend(fontsize=6)\nax2.legend(fontsize=6)\n\nplt.tight_layout()\n\nif savePath is not None:\n for extension in [\".png\", \".pdf\"]:\n fig.savefig(savePath + 'Average_Deviation_Plots_Over_{}_Yrs{}'.format(time[-1], extension))", | |
| "execution_count": 55, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "text/plain": "<IPython.core.display.Javascript object>", | |
| "application/javascript": "/* Put everything inside the global mpl namespace */\nwindow.mpl = {};\n\n\nmpl.get_websocket_type = function() {\n if (typeof(WebSocket) !== 'undefined') {\n return WebSocket;\n } else if (typeof(MozWebSocket) !== 'undefined') {\n return MozWebSocket;\n } else {\n alert('Your browser does not have WebSocket support.' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.');\n };\n}\n\nmpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = (this.ws.binaryType != undefined);\n\n if (!this.supports_binary) {\n var warnings = document.getElementById(\"mpl-warnings\");\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent = (\n \"This browser does not support binary websocket messages. \" +\n \"Performance may be slow.\");\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = $('<div/>');\n this._root_extra_style(this.root)\n this.root.attr('style', 'display: inline-block');\n\n $(parent_element).append(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n fig.send_message(\"send_image_mode\", {});\n if (mpl.ratio != 1) {\n fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n }\n fig.send_message(\"refresh\", {});\n }\n\n this.imageObj.onload = function() {\n if (fig.image_mode == 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function() {\n this.ws.close();\n }\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n}\n\nmpl.figure.prototype._init_header = function() {\n var titlebar = $(\n '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n 'ui-helper-clearfix\"/>');\n var titletext = $(\n '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n 'text-align: center; padding: 3px;\"/>');\n titlebar.append(titletext)\n this.root.append(titlebar);\n this.header = titletext[0];\n}\n\n\n\nmpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n\n}\n\n\nmpl.figure.prototype._root_extra_style = function(canvas_div) {\n\n}\n\nmpl.figure.prototype._init_canvas = function() {\n var fig = this;\n\n var canvas_div = $('<div/>');\n\n canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n\n function canvas_keyboard_event(event) {\n return fig.key_event(event, event['data']);\n }\n\n canvas_div.keydown('key_press', canvas_keyboard_event);\n canvas_div.keyup('key_release', canvas_keyboard_event);\n this.canvas_div = canvas_div\n this._canvas_extra_style(canvas_div)\n this.root.append(canvas_div);\n\n var canvas = $('<canvas/>');\n canvas.addClass('mpl-canvas');\n canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n\n this.canvas = canvas[0];\n this.context = canvas[0].getContext(\"2d\");\n\n var backingStore = this.context.backingStorePixelRatio ||\n\tthis.context.webkitBackingStorePixelRatio ||\n\tthis.context.mozBackingStorePixelRatio ||\n\tthis.context.msBackingStorePixelRatio ||\n\tthis.context.oBackingStorePixelRatio ||\n\tthis.context.backingStorePixelRatio || 1;\n\n mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n\n var rubberband = $('<canvas/>');\n rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n\n var pass_mouse_events = true;\n\n canvas_div.resizable({\n start: function(event, ui) {\n pass_mouse_events = false;\n },\n resize: function(event, ui) {\n fig.request_resize(ui.size.width, ui.size.height);\n },\n stop: function(event, ui) {\n pass_mouse_events = true;\n fig.request_resize(ui.size.width, ui.size.height);\n },\n });\n\n function mouse_event_fn(event) {\n if (pass_mouse_events)\n return fig.mouse_event(event, event['data']);\n }\n\n rubberband.mousedown('button_press', mouse_event_fn);\n rubberband.mouseup('button_release', mouse_event_fn);\n // Throttle sequential mouse events to 1 every 20ms.\n rubberband.mousemove('motion_notify', mouse_event_fn);\n\n rubberband.mouseenter('figure_enter', mouse_event_fn);\n rubberband.mouseleave('figure_leave', mouse_event_fn);\n\n canvas_div.on(\"wheel\", function (event) {\n event = event.originalEvent;\n event['data'] = 'scroll'\n if (event.deltaY < 0) {\n event.step = 1;\n } else {\n event.step = -1;\n }\n mouse_event_fn(event);\n });\n\n canvas_div.append(canvas);\n canvas_div.append(rubberband);\n\n this.rubberband = rubberband;\n this.rubberband_canvas = rubberband[0];\n this.rubberband_context = rubberband[0].getContext(\"2d\");\n this.rubberband_context.strokeStyle = \"#000000\";\n\n this._resize_canvas = function(width, height) {\n // Keep the size of the canvas, canvas container, and rubber band\n // canvas in synch.\n canvas_div.css('width', width)\n canvas_div.css('height', height)\n\n canvas.attr('width', width * mpl.ratio);\n canvas.attr('height', height * mpl.ratio);\n canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n\n rubberband.attr('width', width);\n rubberband.attr('height', height);\n }\n\n // Set the figure to an initial 600x600px, this will subsequently be updated\n // upon first draw.\n this._resize_canvas(600, 600);\n\n // Disable right mouse context menu.\n $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n return false;\n });\n\n function set_focus () {\n canvas.focus();\n canvas_div.focus();\n }\n\n window.setTimeout(set_focus, 100);\n}\n\nmpl.figure.prototype._init_toolbar = function() {\n var fig = this;\n\n var nav_element = $('<div/>')\n nav_element.attr('style', 'width: 100%');\n this.root.append(nav_element);\n\n // Define a callback function for later on.\n function toolbar_event(event) {\n return fig.toolbar_button_onclick(event['data']);\n }\n function toolbar_mouse_event(event) {\n return fig.toolbar_button_onmouseover(event['data']);\n }\n\n for(var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n // put a spacer in here.\n continue;\n }\n var button = $('<button/>');\n button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n 'ui-button-icon-only');\n button.attr('role', 'button');\n button.attr('aria-disabled', 'false');\n button.click(method_name, toolbar_event);\n button.mouseover(tooltip, toolbar_mouse_event);\n\n var icon_img = $('<span/>');\n icon_img.addClass('ui-button-icon-primary ui-icon');\n icon_img.addClass(image);\n icon_img.addClass('ui-corner-all');\n\n var tooltip_span = $('<span/>');\n tooltip_span.addClass('ui-button-text');\n tooltip_span.html(tooltip);\n\n button.append(icon_img);\n button.append(tooltip_span);\n\n nav_element.append(button);\n }\n\n var fmt_picker_span = $('<span/>');\n\n var fmt_picker = $('<select/>');\n fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n fmt_picker_span.append(fmt_picker);\n nav_element.append(fmt_picker_span);\n this.format_dropdown = fmt_picker[0];\n\n for (var ind in mpl.extensions) {\n var fmt = mpl.extensions[ind];\n var option = $(\n '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n fmt_picker.append(option)\n }\n\n // Add hover states to the ui-buttons\n $( \".ui-button\" ).hover(\n function() { $(this).addClass(\"ui-state-hover\");},\n function() { $(this).removeClass(\"ui-state-hover\");}\n );\n\n var status_bar = $('<span class=\"mpl-message\"/>');\n nav_element.append(status_bar);\n this.message = status_bar[0];\n}\n\nmpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n // which will in turn request a refresh of the image.\n this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n}\n\nmpl.figure.prototype.send_message = function(type, properties) {\n properties['type'] = type;\n properties['figure_id'] = this.id;\n this.ws.send(JSON.stringify(properties));\n}\n\nmpl.figure.prototype.send_draw_message = function() {\n if (!this.waiting) {\n this.waiting = true;\n this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n }\n}\n\n\nmpl.figure.prototype.handle_save = function(fig, msg) {\n var format_dropdown = fig.format_dropdown;\n var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n fig.ondownload(fig, format);\n}\n\n\nmpl.figure.prototype.handle_resize = function(fig, msg) {\n var size = msg['size'];\n if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n fig._resize_canvas(size[0], size[1]);\n fig.send_message(\"refresh\", {});\n };\n}\n\nmpl.figure.prototype.handle_rubberband = function(fig, msg) {\n var x0 = msg['x0'] / mpl.ratio;\n var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n var x1 = msg['x1'] / mpl.ratio;\n var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n x0 = Math.floor(x0) + 0.5;\n y0 = Math.floor(y0) + 0.5;\n x1 = Math.floor(x1) + 0.5;\n y1 = Math.floor(y1) + 0.5;\n var min_x = Math.min(x0, x1);\n var min_y = Math.min(y0, y1);\n var width = Math.abs(x1 - x0);\n var height = Math.abs(y1 - y0);\n\n fig.rubberband_context.clearRect(\n 0, 0, fig.canvas.width, fig.canvas.height);\n\n fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n}\n\nmpl.figure.prototype.handle_figure_label = function(fig, msg) {\n // Updates the figure title.\n fig.header.textContent = msg['label'];\n}\n\nmpl.figure.prototype.handle_cursor = function(fig, msg) {\n var cursor = msg['cursor'];\n switch(cursor)\n {\n case 0:\n cursor = 'pointer';\n break;\n case 1:\n cursor = 'default';\n break;\n case 2:\n cursor = 'crosshair';\n break;\n case 3:\n cursor = 'move';\n break;\n }\n fig.rubberband_canvas.style.cursor = cursor;\n}\n\nmpl.figure.prototype.handle_message = function(fig, msg) {\n fig.message.textContent = msg['message'];\n}\n\nmpl.figure.prototype.handle_draw = function(fig, msg) {\n // Request the server to send over a new figure.\n fig.send_draw_message();\n}\n\nmpl.figure.prototype.handle_image_mode = function(fig, msg) {\n fig.image_mode = msg['mode'];\n}\n\nmpl.figure.prototype.updated_canvas_event = function() {\n // Called whenever the canvas gets updated.\n this.send_message(\"ack\", {});\n}\n\n// A function to construct a web socket function for onmessage handling.\n// Called in the figure constructor.\nmpl.figure.prototype._make_on_message_function = function(fig) {\n return function socket_on_message(evt) {\n if (evt.data instanceof Blob) {\n /* FIXME: We get \"Resource interpreted as Image but\n * transferred with MIME type text/plain:\" errors on\n * Chrome. But how to set the MIME type? It doesn't seem\n * to be part of the websocket stream */\n evt.data.type = \"image/png\";\n\n /* Free the memory for the previous frames */\n if (fig.imageObj.src) {\n (window.URL || window.webkitURL).revokeObjectURL(\n fig.imageObj.src);\n }\n\n fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n evt.data);\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n }\n else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n fig.imageObj.src = evt.data;\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n }\n\n var msg = JSON.parse(evt.data);\n var msg_type = msg['type'];\n\n // Call the \"handle_{type}\" callback, which takes\n // the figure and JSON message as its only arguments.\n try {\n var callback = fig[\"handle_\" + msg_type];\n } catch (e) {\n console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n return;\n }\n\n if (callback) {\n try {\n // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n callback(fig, msg);\n } catch (e) {\n console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n }\n }\n };\n}\n\n// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\nmpl.findpos = function(e) {\n //this section is from http://www.quirksmode.org/js/events_properties.html\n var targ;\n if (!e)\n e = window.event;\n if (e.target)\n targ = e.target;\n else if (e.srcElement)\n targ = e.srcElement;\n if (targ.nodeType == 3) // defeat Safari bug\n targ = targ.parentNode;\n\n // jQuery normalizes the pageX and pageY\n // pageX,Y are the mouse positions relative to the document\n // offset() returns the position of the element relative to the document\n var x = e.pageX - $(targ).offset().left;\n var y = e.pageY - $(targ).offset().top;\n\n return {\"x\": x, \"y\": y};\n};\n\n/*\n * return a copy of an object with only non-object keys\n * we need this to avoid circular references\n * http://stackoverflow.com/a/24161582/3208463\n */\nfunction simpleKeys (original) {\n return Object.keys(original).reduce(function (obj, key) {\n if (typeof original[key] !== 'object')\n obj[key] = original[key]\n return obj;\n }, {});\n}\n\nmpl.figure.prototype.mouse_event = function(event, name) {\n var canvas_pos = mpl.findpos(event)\n\n if (name === 'button_press')\n {\n this.canvas.focus();\n this.canvas_div.focus();\n }\n\n var x = canvas_pos.x * mpl.ratio;\n var y = canvas_pos.y * mpl.ratio;\n\n this.send_message(name, {x: x, y: y, button: event.button,\n step: event.step,\n guiEvent: simpleKeys(event)});\n\n /* This prevents the web browser from automatically changing to\n * the text insertion cursor when the button is pressed. We want\n * to control all of the cursor setting manually through the\n * 'cursor' event from matplotlib */\n event.preventDefault();\n return false;\n}\n\nmpl.figure.prototype._key_event_extra = function(event, name) {\n // Handle any extra behaviour associated with a key event\n}\n\nmpl.figure.prototype.key_event = function(event, name) {\n\n // Prevent repeat events\n if (name == 'key_press')\n {\n if (event.which === this._key)\n return;\n else\n this._key = event.which;\n }\n if (name == 'key_release')\n this._key = null;\n\n var value = '';\n if (event.ctrlKey && event.which != 17)\n value += \"ctrl+\";\n if (event.altKey && event.which != 18)\n value += \"alt+\";\n if (event.shiftKey && event.which != 16)\n value += \"shift+\";\n\n value += 'k';\n value += event.which.toString();\n\n this._key_event_extra(event, name);\n\n this.send_message(name, {key: value,\n guiEvent: simpleKeys(event)});\n return false;\n}\n\nmpl.figure.prototype.toolbar_button_onclick = function(name) {\n if (name == 'download') {\n this.handle_save(this, null);\n } else {\n this.send_message(\"toolbar_button\", {name: name});\n }\n};\n\nmpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n this.message.textContent = tooltip;\n};\nmpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n\nmpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n\nmpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n // Create a \"websocket\"-like object which calls the given IPython comm\n // object with the appropriate methods. Currently this is a non binary\n // socket, so there is still some room for performance tuning.\n var ws = {};\n\n ws.close = function() {\n comm.close()\n };\n ws.send = function(m) {\n //console.log('sending', m);\n comm.send(m);\n };\n // Register the callback with on_msg.\n comm.on_msg(function(msg) {\n //console.log('receiving', msg['content']['data'], msg);\n // Pass the mpl event to the overriden (by mpl) onmessage function.\n ws.onmessage(msg['content']['data'])\n });\n return ws;\n}\n\nmpl.mpl_figure_comm = function(comm, msg) {\n // This is the function which gets called when the mpl process\n // starts-up an IPython Comm through the \"matplotlib\" channel.\n\n var id = msg.content.data.id;\n // Get hold of the div created by the display call when the Comm\n // socket was opened in Python.\n var element = $(\"#\" + id);\n var ws_proxy = comm_websocket_adapter(comm)\n\n function ondownload(figure, format) {\n window.open(figure.imageObj.src);\n }\n\n var fig = new mpl.figure(id, ws_proxy,\n ondownload,\n element.get(0));\n\n // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n // web socket which is closed, not our websocket->open comm proxy.\n ws_proxy.onopen();\n\n fig.parent_element = element.get(0);\n fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n if (!fig.cell_info) {\n console.error(\"Failed to find cell for figure\", id, fig);\n return;\n }\n\n var output_index = fig.cell_info[2]\n var cell = fig.cell_info[0];\n\n};\n\nmpl.figure.prototype.handle_close = function(fig, msg) {\n var width = fig.canvas.width/mpl.ratio\n fig.root.unbind('remove')\n\n // Update the output cell to use the data from the current canvas.\n fig.push_to_output();\n var dataURL = fig.canvas.toDataURL();\n // Re-enable the keyboard manager in IPython - without this line, in FF,\n // the notebook keyboard shortcuts fail.\n IPython.keyboard_manager.enable()\n $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n fig.close_ws(fig, msg);\n}\n\nmpl.figure.prototype.close_ws = function(fig, msg){\n fig.send_message('closing', msg);\n // fig.ws.close()\n}\n\nmpl.figure.prototype.push_to_output = function(remove_interactive) {\n // Turn the data on the canvas into data in the output cell.\n var width = this.canvas.width/mpl.ratio\n var dataURL = this.canvas.toDataURL();\n this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n}\n\nmpl.figure.prototype.updated_canvas_event = function() {\n // Tell IPython that the notebook contents must change.\n IPython.notebook.set_dirty(true);\n this.send_message(\"ack\", {});\n var fig = this;\n // Wait a second, then push the new image to the DOM so\n // that it is saved nicely (might be nice to debounce this).\n setTimeout(function () { fig.push_to_output() }, 1000);\n}\n\nmpl.figure.prototype._init_toolbar = function() {\n var fig = this;\n\n var nav_element = $('<div/>')\n nav_element.attr('style', 'width: 100%');\n this.root.append(nav_element);\n\n // Define a callback function for later on.\n function toolbar_event(event) {\n return fig.toolbar_button_onclick(event['data']);\n }\n function toolbar_mouse_event(event) {\n return fig.toolbar_button_onmouseover(event['data']);\n }\n\n for(var toolbar_ind in mpl.toolbar_items){\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) { continue; };\n\n var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n button.click(method_name, toolbar_event);\n button.mouseover(tooltip, toolbar_mouse_event);\n nav_element.append(button);\n }\n\n // Add the status bar.\n var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n nav_element.append(status_bar);\n this.message = status_bar[0];\n\n // Add the close button to the window.\n var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n button.click(function (evt) { fig.handle_close(fig, {}); } );\n button.mouseover('Stop Interaction', toolbar_mouse_event);\n buttongrp.append(button);\n var titlebar = this.root.find($('.ui-dialog-titlebar'));\n titlebar.prepend(buttongrp);\n}\n\nmpl.figure.prototype._root_extra_style = function(el){\n var fig = this\n el.on(\"remove\", function(){\n\tfig.close_ws(fig, {});\n });\n}\n\nmpl.figure.prototype._canvas_extra_style = function(el){\n // this is important to make the div 'focusable\n el.attr('tabindex', 0)\n // reach out to IPython and tell the keyboard manager to turn it's self\n // off when our div gets focus\n\n // location in version 3\n if (IPython.notebook.keyboard_manager) {\n IPython.notebook.keyboard_manager.register_events(el);\n }\n else {\n // location in version 2\n IPython.keyboard_manager.register_events(el);\n }\n\n}\n\nmpl.figure.prototype._key_event_extra = function(event, name) {\n var manager = IPython.notebook.keyboard_manager;\n if (!manager)\n manager = IPython.keyboard_manager;\n\n // Check for shift+enter\n if (event.shiftKey && event.which == 13) {\n this.canvas_div.blur();\n // select the cell after this one\n var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n IPython.notebook.select(index + 1);\n }\n}\n\nmpl.figure.prototype.handle_save = function(fig, msg) {\n fig.ondownload(fig, null);\n}\n\n\nmpl.find_output_cell = function(html_output) {\n // Return the cell and output element which can be found *uniquely* in the notebook.\n // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n // IPython event is triggered only after the cells have been serialised, which for\n // our purposes (turning an active figure into a static one), is too late.\n var cells = IPython.notebook.get_cells();\n var ncells = cells.length;\n for (var i=0; i<ncells; i++) {\n var cell = cells[i];\n if (cell.cell_type === 'code'){\n for (var j=0; j<cell.output_area.outputs.length; j++) {\n var data = cell.output_area.outputs[j];\n if (data.data) {\n // IPython >= 3 moved mimebundle to data attribute of output\n data = data.data;\n }\n if (data['text/html'] == html_output) {\n return [cell, data, j];\n }\n }\n }\n }\n}\n\n// Register the function which deals with the matplotlib target/channel.\n// The kernel may be null if the page has been refreshed.\nif (IPython.notebook.kernel != null) {\n IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n}\n" | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "text/html": "<img src=\" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment