Last active
January 3, 2026 21:17
-
-
Save JoeJoe1313/e95292595763ce75b41a12c43520295c to your computer and use it in GitHub Desktop.
Trigonometric Identities the Euler Way
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "id": "2c9e7ca0", | |
| "metadata": {}, | |
| "source": [ | |
| "If we add (1) and (2), we can derive the cosine function:\n", | |
| "\n", | |
| "$$\\label{eq:3}\n", | |
| "\\cos\\theta = \\frac{e^{i\\theta} + e^{-i\\theta}}{2}. \\tag{3}\n", | |
| "$$\n", | |
| "\n", | |
| "If we subtract (2) from (1), we can derive the sine function:\n", | |
| "\n", | |
| "$$\\label{eq:4}\n", | |
| "\\sin\\theta = \\frac{e^{i\\theta} - e^{-i\\theta}}{2i}. \\tag{4}\n", | |
| "$$\n", | |
| "\n", | |
| "\n", | |
| "# Angle Addition Formulas\n", | |
| "\n", | |
| "Let's say we want to derive the angle addition formulas for sine and cosine using Euler's formula. We start with\n", | |
| "\n", | |
| "$$\n", | |
| "e^{i(\\alpha + \\beta)} = e^{i\\alpha + i\\beta} = e^{i\\alpha} e^{i\\beta}.\n", | |
| "$$\n", | |
| "\n", | |
| "Applying the Euler's formula to the left side, we have:\n", | |
| "\n", | |
| "$$\n", | |
| "e^{i(\\alpha + \\beta)} = \\cos(\\alpha + \\beta) + i \\sin(\\alpha + \\beta).\n", | |
| "$$\n", | |
| "\n", | |
| "Now, applying the Euler's formula to the right side, we have:\n", | |
| "\n", | |
| "$$\n", | |
| "e^{i\\alpha} e^{i\\beta} = (\\cos\\alpha + i \\sin\\alpha)(\\cos\\beta + i \\sin\\beta) =\n", | |
| "$$\n", | |
| "\n", | |
| "$$\n", | |
| "= \\cos\\alpha \\cos\\beta - \\sin\\alpha \\sin\\beta + i (\\sin\\alpha \\cos\\beta + \\cos\\alpha \\sin\\beta).\n", | |
| "$$\n", | |
| "\n", | |
| "Equating the real parts of the above two expressions, we get the **cosine addition formula**\n", | |
| "\n", | |
| "$$\n", | |
| "\\cos(\\alpha + \\beta) = \\cos\\alpha \\cos\\beta - \\sin\\alpha \\sin\\beta.\n", | |
| "$$\n", | |
| "\n", | |
| "Equating the imaginary parts, we get the **sine addition formula**\n", | |
| "\n", | |
| "$$\n", | |
| "\\sin(\\alpha + \\beta) = \\sin\\alpha \\cos\\beta + \\cos\\alpha \\sin\\beta.\n", | |
| "$$" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "56fc4761", | |
| "metadata": {}, | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "blog", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "name": "python", | |
| "version": "3.11.9" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 5 | |
| } |
Author
JoeJoe1313
commented
Aug 5, 2025
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment