Created
December 11, 2020 11:00
-
-
Save Feyn-Man/fefd9a38224f1f1e8ca1b18dcafb06d1 to your computer and use it in GitHub Desktop.
biggest_area_selector.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "nbformat": 4, | |
| "nbformat_minor": 0, | |
| "metadata": { | |
| "colab": { | |
| "name": "biggest_area_selector.ipynb", | |
| "provenance": [], | |
| "authorship_tag": "ABX9TyPq2Hm3tJ9Rqc0ublJpzU+b", | |
| "include_colab_link": true | |
| }, | |
| "kernelspec": { | |
| "name": "python3", | |
| "display_name": "Python 3" | |
| } | |
| }, | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "view-in-github", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "<a href=\"https://colab.research.google.com/gist/Feyn-Man/fefd9a38224f1f1e8ca1b18dcafb06d1/biggest_area_selector.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "6h1Gg-p_c9BO" | |
| }, | |
| "source": [ | |
| "import numpy as np\r\n", | |
| "from scipy import ndimage" | |
| ], | |
| "execution_count": 1, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "kEfYfD7idHbF" | |
| }, | |
| "source": [ | |
| "def biggest_area_selector(arr):\r\n", | |
| " \r\n", | |
| " \"\"\"\r\n", | |
| " Keep the connected component with the biggest area inside of a numpy array.\r\n", | |
| "\r\n", | |
| " Example:\r\n", | |
| " > arr = np.array([[1,1,1],\r\n", | |
| " [0,1,0],\r\n", | |
| " [0,0,0],\r\n", | |
| " [2,2,1]])\r\n", | |
| " \r\n", | |
| " > biggest_area_selector(arr)\r\n", | |
| " array([[1, 1, 1],\r\n", | |
| " [0, 1, 0],\r\n", | |
| " [0, 0, 0],\r\n", | |
| " [0, 0, 0]])\r\n", | |
| " \"\"\"\r\n", | |
| "\r\n", | |
| " label_arr, _ = ndimage.label(arr)\r\n", | |
| " nonzero_labels = np.unique(label_arr)[np.unique(label_arr) > 0]\r\n", | |
| " areas = np.bincount(label_arr.reshape((label_arr.size, )))\r\n", | |
| " max_label = nonzero_labels[np.argmax(areas[1:])]\r\n", | |
| " return np.where(label_arr == max_label, arr, 0)" | |
| ], | |
| "execution_count": 2, | |
| "outputs": [] | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment